000777646 000__ 05100cam\a2200541Ii\4500 000777646 001__ 777646 000777646 005__ 20230306142727.0 000777646 006__ m\\\\\o\\d\\\\\\\\ 000777646 007__ cr\nn\nnnunnun 000777646 008__ 161027s2016\\\\si\a\\\\ob\\\\000\0\eng\d 000777646 019__ $$a961415976$$a961454439$$a961825570$$a962154590$$a962450178$$a964878679 000777646 020__ $$a9789811023835$$q(electronic book) 000777646 020__ $$a9811023832$$q(electronic book) 000777646 020__ $$z9789811023828 000777646 020__ $$z9811023824 000777646 035__ $$aSP(OCoLC)ocn961272004 000777646 035__ $$aSP(OCoLC)961272004$$z(OCoLC)961415976$$z(OCoLC)961454439$$z(OCoLC)961825570$$z(OCoLC)962154590$$z(OCoLC)962450178$$z(OCoLC)964878679 000777646 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dYDX$$dN$T$$dIDEBK$$dEBLCP$$dOCLCQ$$dN$T$$dGW5XE$$dOCLCF$$dIDB$$dUAB$$dIOG 000777646 049__ $$aISEA 000777646 050_4 $$aTL796 000777646 08204 $$a629.434$$223 000777646 1001_ $$aWang, Danwei,$$eauthor. 000777646 24510 $$aSatellite formation flying :$$brelative dynamics, formation design, fuel optimal maneuvers and formation maintenance /$$cDanwei Wang, Baolin Wu, Eng Kee Poh. 000777646 264_1 $$aSingapore :$$bSpringer,$$c2016. 000777646 300__ $$a1 online resource :$$billustrations. 000777646 336__ $$atext$$btxt$$2rdacontent 000777646 337__ $$acomputer$$bc$$2rdamedia 000777646 338__ $$aonline resource$$bcr$$2rdacarrier 000777646 4901_ $$aIntelligent systems, control and automation: Science and engineering ;$$vvolume 87 000777646 504__ $$aIncludes bibliographical references. 000777646 5050_ $$a1 Introduction; 1.1 Background; 1.1.1 Motivations; 1.1.2 Applications; 1.1.3 Challenges; 1.2 Objectives of This Book; 1.3 Preview of Chapters; References; 2 Dynamic Models of Satellite Relative Motion Around an Oblate Earth; 2.1 Introduction; 2.2 Nonlinear Dynamic Model of Relative Motion; 2.2.1 J2 Reference Satellite Dynamics in LVLH Frame; 2.2.1.1 Properties of LVLH Frame; 2.2.1.2 J2 Dynamics of a Satellite in LVLH Frame; 2.2.2 Derivation of Exact J2 Nonlinear Relative Dynamics; 2.2.2.1 Lagrangian Formulation of Relative Motion; 2.2.2.2 Kinetic Energy; 2.2.2.3 Potential Energy. 000777646 5058_ $$a2.2.2.4 Exact Nonlinear J2 Relative Dynamics2.3 Linearized Dynamic Models of Relative Motion; 2.4 Validation of Proposed Dynamic Models by Simulation; 2.5 Comparison Study of Relative Dynamic Models; 2.5.1 Comparison Method with Model Error Index; 2.5.2 Selected Dynamic Models for Comparison Study; 2.5.2.1 Clohessy-Wiltshire Model; 2.5.2.2 Tschauner-Hempel Model; 2.5.2.3 Unperturbed Nonlinear Model; 2.5.2.4 Schweighart-Sedwick Model; 2.5.2.5 Xu-Wang Model; 2.5.3 Case Studies; 2.5.3.1 Simulation Scenario; 2.5.3.2 Case 1: Error Index Versus Formation Size. 000777646 5058_ $$a2.5.3.3 Case 2: Error Index Versus Eccentricity2.5.3.4 Case 3: Error Index Versus Inclination; 2.5.3.5 Case 4: Error Index Versus Semimajor Axis; 2.6 Summary; References; 3 Passive and Periodic Satellite Formation Design Around an Oblate Earth; 3.1 Introduction; 3.2 Passive and Periodic Relative Motion Under J2 Perturbation; 3.3 Periodic and Quasi-periodic Relative Orbits at Critical Inclination; 3.3.1 Periodic Relative Orbit; 3.3.2 Quasi-periodic Relative Orbit; 3.3.3 Quasi-periodic Relative Orbit Conditions in Terms of Actual Orbit Variables; 3.3.4 Numerical Simulations. 000777646 5058_ $$a3.4 In-Plane Satellite Formation in Eccentric Orbits3.4.1 Identical Anomaly In-Plane Formation; 3.4.2 Differential Anomaly In-Plane Formation; 3.4.3 Almost Constant Separation Formation; 3.5 Conclusions; References; 4 Nonlinear Optimization of Low-Thrust Trajectory for Satellite Formation; 4.1 Introduction; 4.2 Nonlinear Relative Motion Dynamics; 4.3 Problem Formulation of Trajectory Optimization for Satellite Formation; 4.3.1 Initial Condition Constraints; 4.3.2 Final Condition Constraints; 4.3.3 Path Constraints; 4.3.4 Linking Constraints; 4.4 Introduction of Legendre Pseudospectral Method. 000777646 5058_ $$a4.5 Computational Considerations of Nonlinear Programming Problem4.6 Scaling of Nonlinear Programming Problem; 4.6.1 Initial Guess; 4.6.2 Implementation; 4.7 Illustrative Examples; 4.7.1 Example 1: Scenario of Two Satellites, One Burn Phase; 4.7.2 Example 2: Scenario of Two Satellites, Two Phases: Coast-Burn; 4.7.3 Example 3: Scenario of Two Satellites, Three Phases: Burn-Coast-Burn; 4.7.4 Example 4: Scenario of Two Satellites, Four Phases: Coast-Burn-Coast-Burn; 4.7.5 Example 5: Scenario of Formation Reconfiguration Involving Four Satellites. 000777646 506__ $$aAccess limited to authorized users. 000777646 588__ $$aDescription based on print version record. 000777646 650_0 $$aFormation flying. 000777646 650_0 $$aAutomated vehicles. 000777646 650_0 $$aArtificial satellites$$xTracking. 000777646 7001_ $$aPoh, Eng Kee,$$eauthor. 000777646 7001_ $$aWu, Baolin,$$eauthor. 000777646 77608 $$iPrint version:$$tSatellite Formation Flying.$$d[Place of publication not identified] : Springer Verlag 2016$$z9789811023828$$w(OCoLC)953709437 000777646 830_0 $$aInternational series on intelligent systems, control and automation--science and engineering ;$$vv. 87. 000777646 852__ $$bebk 000777646 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-981-10-2383-5$$zOnline Access$$91397441.1 000777646 909CO $$ooai:library.usi.edu:777646$$pGLOBAL_SET 000777646 980__ $$aEBOOK 000777646 980__ $$aBIB 000777646 982__ $$aEbook 000777646 983__ $$aOnline 000777646 994__ $$a92$$bISE