000777679 000__ 04735cam\a2200517Mi\4500 000777679 001__ 777679 000777679 005__ 20230306142728.0 000777679 006__ m\\\\\o\\d\\\\\\\\ 000777679 007__ cr\nn\nnnunnun 000777679 008__ 161029t20162017gw\\\\\\ob\\\\001\0\eng\d 000777679 020__ $$a9783662529317$$q(electronic book) 000777679 020__ $$a3662529319$$q(electronic book) 000777679 020__ $$z9783662529294 000777679 035__ $$aSP(OCoLC)ocn961456027 000777679 035__ $$aSP(OCoLC)961456027 000777679 040__ $$aEBLCP$$beng$$epn$$cEBLCP$$dOCLCO$$dN$T$$dIDEBK$$dEBLCP$$dGW5XE$$dOCLCO$$dOCLCQ$$dOCLCF$$dIDB$$dUAB$$dIOG 000777679 049__ $$aISEA 000777679 050_4 $$aQC175.2 000777679 050_4 $$aTA1-2040 000777679 08204 $$a530.13/8$$223 000777679 08204 $$a620 000777679 1001_ $$aDanko, George L. 000777679 24510 $$aModel elements and network solutions of heat, mass and momentum transport processes /$$cGeorge L. Danko. 000777679 260__ $$aBerlin, Germany :$$bSpringer,$$c2016, ©2017. 000777679 300__ $$a1 online resource (260 pages). 000777679 336__ $$atext$$btxt$$2rdacontent 000777679 337__ $$acomputer$$bc$$2rdamedia 000777679 338__ $$aonline resource$$bcr$$2rdacarrier 000777679 4901_ $$aHeat and Mass Transfer 000777679 500__ $$a7.5 State-Flux Network Model for Time Dependent Mechanical Energy Transport. 000777679 504__ $$aIncludes bibliographical references and index. 000777679 5050_ $$aPreface; Contents; About the Author; Symbols, Definitions Commonly Used; 1 Introduction; Abstract; 1.1 Introduction; 2 Phenomenological Properties and Constitutive Equations of Transport Processes; Abstract; 2.1 Density; 2.2 Mixture Density, Concentration, Mass Fraction and Gas Law; 2.3 Temperature; 2.4 Pressure; 2.5 Viscosity in Ideal Gases; 2.6 Viscosity in Real Gases; 2.7 Viscosity in Fluids; 2.8 Typical Viscosity Variations; 2.9 Viscosity in Gas Mixtures; 2.10 Viscous Stresses in Three Dimensions; 2.11 Viscosity and Shear Stress in Turbulent Flow. 000777679 5058_ $$a2.12 Molecular Thermal Conductivity in Gases2.13 Thermal Conductivity in Gas Mixtures; 2.14 Thermal Conductivity in Liquids and Solids; 2.15 Thermal Conductivity and Diffusivity in Turbulent Flow; 2.16 Mass Diffusivity in Gases; 2.17 Mass Diffusivity in Gas Mixtures; 2.18 Mass Diffusivity in Liquids; 2.19 Mass Diffusivity in Solids; 2.20 Diffusivity in Turbulent Flow; 2.21 Specific Heat; 2.22 Compressibility of Gas and Liquid; 2.23 Corollary of the Elements of Transport Processes; 3 Conservation of a Scalar Extensive in Integral Form; Abstract; 3.1 The Eulerian Shell-Balance Equation. 000777679 5058_ $$a3.2 Eulerian Balance Equation with Lagrangean Internal Transport3.3 Comparison of the Eulerian and the New Eulerian-Lagrangean Forms; 4 Conservation of a Scalar Extensive in Differential Form; Abstract; 4.1 Differential Species Balance in a Finite Cell; 4.2 Differential Cell Balances with Substance Transport and Bulk Flow Conservation; 4.3 Directional, off-Centered Differential Substance Balance Equations; 5 Conservation of a Scalar Extensive in a State-Flux, Space-Time, Finite-Volume Cell; Abstract; 5.1 State-Flux, Finite-Volume Cell for Unit Courant Number. 000777679 5058_ $$a5.2 Multiple-Level, State-Flux, Finite-Volume Cell with Arbitrary Courant Number5.3 State-Flux, Space-Time Finite-Volume Block Model with Arbitrary Courant Number; 5.4 Extended Applications of the State-Flux, Space-Time Finite-Volume Block Model; 5.5 Synopsis of the SFST Substance Balance Formulation; 6 Conservation of Energy in Integral, Differential, and State-Flux Forms; Abstract; 6.1 Integral Balance Equation for Energy; 6.2 Separation of the Mechanical and Thermal Components in the Integral Balance Equation for Energy; 6.2.1 The Case of Zero Stagnant Volume. 000777679 5058_ $$a6.2.2 The Case of Nonzero Stagnant Volume7 Transport Models for Mechanical Energy; Abstract; 7.1 Differential Form of Mechanical Energy Balance in a Finite Cell for Unit Courant Number; 7.2 State-Flux, Finite-Volume, Mechanical Energy Transport Model for a Network Branch; 7.3 State-Flux, Finite-Volume, Mechanical Energy Transport Model for a Network Junction; 7.3.1 Mass Balance in a Junction Node; 7.3.2 Mechanical Energy Balance for a Junction Node; 7.4 State-Flux Network Model for Mechanical Energy Transport in Steady State. 000777679 506__ $$aAccess limited to authorized users. 000777679 588__ $$aDescription based on print version record. 000777679 650_0 $$aTransport theory. 000777679 650_0 $$aTransport theory$$xMathematical models. 000777679 77608 $$iPrint version:$$aDanko, George.$$tModel Elements and Network Solutions of Heat, Mass and Momentum Transport Processes.$$dBerlin, Heidelberg : Springer Berlin Heidelberg, ©2016$$z9783662529294 000777679 830_0 $$aHeat and mass transfer. 000777679 852__ $$bebk 000777679 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-662-52931-7$$zOnline Access$$91397441.1 000777679 909CO $$ooai:library.usi.edu:777679$$pGLOBAL_SET 000777679 980__ $$aEBOOK 000777679 980__ $$aBIB 000777679 982__ $$aEbook 000777679 983__ $$aOnline 000777679 994__ $$a92$$bISE