000778445 000__ 05766cam\a2200565Ii\4500 000778445 001__ 778445 000778445 005__ 20230306142836.0 000778445 006__ m\\\\\o\\d\\\\\\\\ 000778445 007__ cr\nn\nnnunnun 000778445 008__ 161214s2017\\\\sz\\\\\\ob\\\\001\0\eng\d 000778445 019__ $$a967865196$$a974650968$$a980992783 000778445 020__ $$a9783319460550$$q(electronic book) 000778445 020__ $$a3319460552$$q(electronic book) 000778445 020__ $$z9783319460543 000778445 020__ $$z3319460544 000778445 0247_ $$a10.1007/978-3-319-46055-0$$2doi 000778445 035__ $$aSP(OCoLC)ocn965904303 000778445 035__ $$aSP(OCoLC)965904303$$z(OCoLC)967865196$$z(OCoLC)974650968$$z(OCoLC)980992783 000778445 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dIDEBK$$dEBLCP$$dGW5XE$$dN$T$$dIDB$$dAZU$$dUAB$$dCOO$$dYDX$$dOCLCF$$dUPM$$dVT2$$dUWO$$dIOG 000778445 049__ $$aISEA 000778445 050_4 $$aTL1060 000778445 050_4 $$aTA1-2040 000778445 08204 $$a629.45/88$$223 000778445 08204 $$a620 000778445 1001_ $$aDirkx, Dominic,$$eauthor. 000778445 24510 $$aConceptual shape optimization of entry vehicles :$$bapplied to capsules and winged fuselage vehicles /$$cDominic Dirkx, Erwin Mooij. 000778445 264_1 $$aCham, Switzerland :$$bSpringer,$$c2017. 000778445 300__ $$a1 online resource. 000778445 336__ $$atext$$btxt$$2rdacontent 000778445 337__ $$acomputer$$bc$$2rdamedia 000778445 338__ $$aonline resource$$bcr$$2rdacarrier 000778445 347__ $$atext file$$bPDF$$2rda 000778445 4901_ $$aSpringer aerospace technology 000778445 504__ $$aIncludes bibliographical references and index. 000778445 5050_ $$aSymbols; Subscripts; Abbreviations and Acronyms; 1 Introduction; 1.1 Re-entry Missions; 1.1.1 Re-entry in the 20th Century; 1.1.2 Re-entry in the 21st Century; 1.2 Shape Optimization; 1.3 Overview; 2 Flight Mechanics; 2.1 Flight Environment; 2.1.1 Central Body Shape; 2.1.2 Gravity; 2.1.3 Atmosphere; 2.2 Equations of Motion; 2.2.1 Reference Frames; 2.2.2 Forces; 2.2.3 Entry Equations; 2.3 Guidance Approach; 2.3.1 Capsule; 2.3.2 Winged Vehicle; 2.3.3 Vehicle Stability; 3 Aerothermodynamics; 3.1 Basic Concepts; 3.1.1 Thermodynamic Properties 000778445 5058_ $$a3.1.2 Characteristics of Super/Hypersonic Flow3.1.3 Viscosity; 3.2 Aerodynamic Loads; 3.3 Local-Inclination Methods; 3.3.1 Description of Methods; 3.3.2 Method Selection; 3.4 Heat Transfer; 3.4.1 Convective Heat Transfer; 3.4.2 Capsule Considerations; 4 Numerical Interpolation; 4.1 Basic Concepts; 4.1.1 Continuity and Convexity; 4.1.2 Linear Interpolation; 4.1.3 Bilinear Interpolation; 4.2 Cubic Spline Curves; 4.2.1 Fundamental Concepts; 4.2.2 Bézier and Hermite Splines; 4.2.3 Avoiding Self-intersection and Concavity; 4.3 Hermite-Spline Surfaces; 5 Vehicle Geometry 000778445 5058_ $$a5.1 Analytical Parameterization5.2 Winged Vehicle Parameterization; 5.2.1 Fuselage; 5.2.2 Wings; 5.2.3 Fuselage-Wing Interface; 5.2.4 Mass Model; 5.3 Meshed Surfaces; 6 Optimization; 6.1 General Concepts; 6.1.1 Problem Statement; 6.1.2 Multi-objective Optimality; 6.2 Particle-Swarm Optimization; 6.2.1 Method Overview; 6.2.2 Handling of Constraints; 6.2.3 Multi-objective PSO; 6.3 Shape Optimization; 6.3.1 Performance Criteria; 6.3.2 Constraints; 7 Simulator Design; 7.1 Simulation Code; 7.2 Model Validation; 7.2.1 Aerodynamics; 7.2.2 Vehicle Trajectories; 7.3 Simulation Settings; 7.3.1 General 000778445 5058_ $$a7.3.2 Capsule7.3.3 Winged Vehicle; 8 Shape Analysis -- Capsule; 8.1 Monte Carlo Analysis; 8.2 Optimization; 8.2.1 Two-Dimensional Analysis; 8.2.2 Three-Dimensional Optimization; 8.3 Concluding Remarks; 9 Shape Analysis -- Winged Vehicle; 9.1 Monte Carlo Analysis; 9.2 Optimization Results; 9.2.1 Baseline Optimization; 9.2.2 Pitch-Stable Optimization; 9.2.3 Heat-Rate Tracking Optimization; 9.3 Concluding Remarks; Appendix A Relative Viscous-Force Approximation; Appendix B Winged-Vehicle Shape Generation Example; B.1 Fuselage Shape; B.2 Wing Shape; Appendix C Optimal Capsule Shapes 000778445 5058_ $$aC.1 Evolution of Selected Point on Capsule Pareto FrontC.2 Optimal Capsule Shapes; Appendix D Optimal Winged-Vehicle Shapes; D.1 Evolution of Selected Point on Winged-Vehicle Pareto Front; D.2 Optimal Winged-Vehicle Shape Using Benchmark Settings; References ; Index 000778445 506__ $$aAccess limited to authorized users. 000778445 520__ $$aThis book covers the parameterization of entry capsules, including Apollo capsules and planetary probes, and winged entry vehicles such as the Space Shuttle and lifting bodies. The aerodynamic modelling is based on a variety of panel methods that take shadowing into account, and it has been validated with flight and wind tunnel data of Apollo and the Space Shuttle. The shape optimization is combined with constrained trajectory analysis, and the multi-objective approach provides the engineer with a Pareto front of optimal shapes. The method detailed in Conceptual Shape Optimization of Entry Vehicles is straightforward, and the output gives the engineer insight in the effect of shape variations on trajectory performance. All applied models and algorithms used are explained in detail, allowing for reconstructing the design tool to the researcher's requirements. Conceptual Shape Optimization of Entry Vehicles will be of interest to both researchers and graduate students in the field of aerospace engineering, and to practitioners within the aerospace industry. 000778445 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed January 16, 2017). 000778445 650_0 $$aSpace vehicles$$xAtmospheric entry. 000778445 7001_ $$aMooij, E. 000778445 77608 $$iPrint version:$$aDirkx, Dominic.$$tConceptual shape optimization of entry vehicles : applied to capsules and winged fuselage vehicles.$$dSwitzerland : Springer, c2017$$z9783319460543$$w2016954621 000778445 830_0 $$aSpringer aerospace technology. 000778445 852__ $$bebk 000778445 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-46055-0$$zOnline Access$$91397441.1 000778445 909CO $$ooai:library.usi.edu:778445$$pGLOBAL_SET 000778445 980__ $$aEBOOK 000778445 980__ $$aBIB 000778445 982__ $$aEbook 000778445 983__ $$aOnline 000778445 994__ $$a92$$bISE