000779408 000__ 04718cam\a2200469Ii\4500 000779408 001__ 779408 000779408 005__ 20230306143016.0 000779408 006__ m\\\\\o\\d\\\\\\\\ 000779408 007__ cr\nn\nnnunnun 000779408 008__ 170207s2017\\\\sz\\\\\\o\\\\\001\0\eng\d 000779408 019__ $$a981821385 000779408 020__ $$a9783319463827$$q(electronic book) 000779408 020__ $$a3319463829$$q(electronic book) 000779408 020__ $$z9783319463810 000779408 0247_ $$a10.1007/978-3-319-46382-7$$2doi 000779408 035__ $$aSP(OCoLC)ocn971542220 000779408 035__ $$aSP(OCoLC)971542220$$z(OCoLC)981821385 000779408 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dEBLCP$$dGW5XE$$dN$T$$dIDEBK$$dYDX$$dOCLCF$$dNJR$$dUAB$$dCOO$$dIOG$$dAZU$$dUWO$$dUPM 000779408 049__ $$aISEA 000779408 050_4 $$aTA357.5.D37 000779408 08204 $$a620.1/06$$223 000779408 08204 $$a620 000779408 1001_ $$aRao, J. S.,$$eauthor. 000779408 24510 $$aSimulation based engineering in fluid flow design /$$cJ. S. Raso. 000779408 264_1 $$aCham, Switzerland :$$bSpringer,$$c[2017] 000779408 300__ $$a1 online resource. 000779408 336__ $$atext$$btxt$$2rdacontent 000779408 337__ $$acomputer$$bc$$2rdamedia 000779408 338__ $$aonline resource$$bcr$$2rdacarrier 000779408 347__ $$atext file$$bPDF$$2rda 000779408 500__ $$aIncludes index. 000779408 5050_ $$a1. Introduction -- 2. Fluid Statics -- 2.1 States of Matter -- 2.2 Pressure in fluids at rest -- 2.3 Buoyancy -- 2.4 Basics of Thermodynamics -- 3. Fluid Dynamics -- 3.1 Characteristics of Fluids -- 3.2 Mass Balance -- 3.3 Force Balance and Momentum Equations -- 3.4 Energy Equation -- 3.5 Kinetic Energy -- 3.6 Internal Energy -- 3.7 Shear Stresses -- 3.8 Equations of Motion -- 3.9 Summary of Fluid Flow Equations -- 4. Finite Volume Method : Diffusion Problems -- 4.1 Diffusion Problem -- 4.2 Diffusion with Source Term -- 4.3 Diffusion with Convection -- 5. Finite Volume Method : Convection-Diffusion Problems -- 5.1 Steady State one-dimensional convection and diffusion -- 6. Pressure Velocity Coupling in Steady Flows-- 6.1 Steady State one-dimensional incompressible problem -- 6.2 Pitot and Venturi Tubes -- 6.3 Stagnation Conditions in Adiabatic Flow -- 6.4 Isentropic Flow -- 6.5 Speed of Sound -- 6.6 Shocks in Supersonic Flow -- 6.7 Other Forms of Energy Equation for Adiabatic Flow -- 6.8 Quasi-One dimensional Flow -- 6.9 Area-Velocity relation -- 6.10 Example of Nozzle Flow ? Subsonic Flow throughout -- 6.11 Nozzle Flow ? Subsonic Flow with Sonic Conditions at the Throat -- 6.12 Nozzle Flow ? Supersonic Flow with Perfect Expansion -- 6.13 CFD Solution of Isentropic Flow in Converging-Diverging Nozzles -- 7. Turbulence -- 7.1 What is Turbulence? -- 7.2 Reynolds Equations -- 7.3 Nozzle Flow with a Normal Shock in the Divergent Portion -- 7.4 CFD Solution of Flow in Converging-Diverging Nozzles with a Normal Shock -- 8. Epilogue -- Index. 000779408 506__ $$aAccess limited to authorized users. 000779408 520__ $$aThis volume offers a tool for High Performance Computing (HPC). A brief historical background on the subject is first given. Fluid Statics dealing with Pressure in fluids at rest, Buoyancy and Basics of Thermodynamics are next presented. The Finite Volume Method, the most convenient process for HPC, is explained in one-dimensional approach to diffusion with convection and pressure velocity coupling. Adiabatic, isentropic and supersonic flows in quasi-one dimensional flows in axisymmetric nozzles is considered before applying CFD solutions. Though the theory is restricted to one-dimensional cases, three-dimensional CFD examples are also given. Lastly, nozzle flows with normal shocks are presented using turbulence models. Worked examples and exercises are given in each chapter. Fluids transport thermal energy for its conversion to kinetic energy, thus playing a major role that is central to all heat engines. With the advent of rotating machinery in the 20th century, Fluid Engineering was developed in the form of hydraulics and hydrodynamics and adapted in engineering Schools across the world until recent times. With the High Performance Computing (HPC) in recent years, Simulation Based Engineering Science (SBES) has gradually replaced the conventional approach in Fluid Flow Design bringing Science directly into Engineering without approximations. Hence this SpringerBrief in Applied Sciences and Technology. This book brings SBES to an entry level allowing young students to quickly adapt to modern design practices. . 000779408 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed February 14, 2017). 000779408 650_0 $$aComputational fluid dynamics. 000779408 650_0 $$aFluid dynamics$$xMathematical models. 000779408 77608 $$iPrint version:$$z9783319463810 000779408 852__ $$bebk 000779408 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-46382-7$$zOnline Access$$91397441.1 000779408 909CO $$ooai:library.usi.edu:779408$$pGLOBAL_SET 000779408 980__ $$aEBOOK 000779408 980__ $$aBIB 000779408 982__ $$aEbook 000779408 983__ $$aOnline 000779408 994__ $$a92$$bISE