000779432 000__ 03501cam\a2200493Mi\4500 000779432 001__ 779432 000779432 005__ 20230306143017.0 000779432 006__ m\\\\\o\\d\\\\\\\\ 000779432 007__ cr\nn\nnnunnun 000779432 008__ 170206s2017\\\\sz\a\\\\ob\\\\001\0\eng\d 000779432 019__ $$a971522757$$a971595529$$a971934319$$a972127242$$a972207710$$a972426213 000779432 020__ $$a9783319504872$$q(electronic book) 000779432 020__ $$a3319504878$$q(electronic book) 000779432 020__ $$z9783319504865 000779432 020__ $$z331950486X 000779432 0247_ $$a10.1007/978-3-319-50487-2$$2doi 000779432 035__ $$aSP(OCoLC)ocn974650884 000779432 035__ $$aSP(OCoLC)974650884$$z(OCoLC)971522757$$z(OCoLC)971595529$$z(OCoLC)971934319$$z(OCoLC)972127242$$z(OCoLC)972207710$$z(OCoLC)972426213 000779432 040__ $$aYDX$$beng$$epn$$cYDX$$dGW5XE$$dOCLCQ$$dNJR$$dOCLCF$$dUAB$$dESU$$dIOG 000779432 049__ $$aISEA 000779432 050_4 $$aQA274.73 000779432 08204 $$a519.2/82$$223 000779432 1001_ $$aComets, Francis. 000779432 24510 $$aDirected polymers in random environments :$$bÉcole d'Été de Probabilités de Saint-Flour XLVI -- 2016 /$$cFrancis Comets. 000779432 260__ $$aCham :$$bSpringer,$$c2017. 000779432 300__ $$a1 online resource (xvi, 199 pages) :$$billustrations. 000779432 336__ $$atext$$btxt$$2rdacontent 000779432 337__ $$acomputer$$bc$$2rdamedia 000779432 338__ $$aonline resource$$bcr$$2rdacarrier 000779432 4901_ $$aLecture notes in mathematics ;$$v2175 000779432 504__ $$aIncludes bibliographical references and index. 000779432 5050_ $$a1 Introduction -- 2 Thermodynamics and Phase Transition -- 3 The martingale approach and the L2 region -- 4 Lattice versus tree -- 5 Semimartingale approach and localization transition -- 6 Log-Gamma polymer model -- 7 Kardar-Parisi-Zhang equation and universality -- 8 Variational formulas. 000779432 506__ $$aAccess limited to authorized users. 000779432 520__ $$aAnalyzing the phase transition from diffusive to localized behavior in a model of directed polymers in a random environment, this volume places particular emphasis on the localization phenomenon. The main question is: What does the path of a random walk look like if rewards and penalties are spatially randomly distributed? This model, which provides a simplified version of stretched elastic chains pinned by random impurities, has attracted much research activity, but it (and its relatives) still holds many secrets, especially in high dimensions. It has non-gaussian scaling limits and it belongs to the so-called KPZ universality class when the space is one-dimensional. Adopting a Gibbsian approach, using general and powerful tools from probability theory, the discrete model is studied in full generality. Presenting the state-of-the art from different perspectives, and written in the form of a first course on the subject, this monograph is aimed at researchers in probability or statistical physics, but is also accessible to masters and Ph.D. students. 000779432 588__ $$aDescription based on print version record. 000779432 650_0 $$aRandom walks (Mathematics) 000779432 650_0 $$aMartingales (Mathematics) 000779432 7112_ $$aEcole d'été de probabilités de Saint-Flour$$n(46th :$$d2016 :$$cSaint-Flour, France) 000779432 77608 $$iPrint version:$$aComets, Francis.$$tDirected polymers in random environments.$$dCham : Springer, 2017$$z331950486X$$z9783319504865$$w(OCoLC)962124664 000779432 830_0 $$aLecture notes in mathematics (Springer-Verlag).$$pÉcole d'été de probabilités de Saint-Flour ;$$v2175. 000779432 85280 $$bebk$$hSpringerLink 000779432 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-50487-2$$zOnline Access$$91397441.1 000779432 909CO $$ooai:library.usi.edu:779432$$pGLOBAL_SET 000779432 980__ $$aEBOOK 000779432 980__ $$aBIB 000779432 982__ $$aEbook 000779432 983__ $$aOnline 000779432 994__ $$a92$$bISE