TY - GEN N2 - This book provides a decentralized approach for the identification and control of robotics systems. It also presents recent research in decentralized neural control and includes applications to robotics. Decentralized control is free from difficulties due to complexity in design, debugging, data gathering and storage requirements, making it preferable for interconnected systems. Furthermore, as opposed to the centralized approach, it can be implemented with parallel processors. This approach deals with four decentralized control schemes, which are able to identify the robot dynamics. The training of each neural network is performed on-line using an extended Kalman filter (EKF). The first indirect decentralized control scheme applies the discrete-time block control approach, to formulate a nonlinear sliding manifold. The second direct decentralized neural control scheme is based on the backstepping technique, approximated by a high order neural network. The third control scheme applies a decentralized neural inverse optimal control for stabilization. The fourth decentralized neural inverse optimal control is designed for trajectory tracking. This comprehensive work on decentralized control of robot manipulators and mobile robots is intended for professors, students and professionals wanting to understand and apply advanced knowledge in their field of work. . DO - 10.1007/978-3-319-53312-4 DO - doi AB - This book provides a decentralized approach for the identification and control of robotics systems. It also presents recent research in decentralized neural control and includes applications to robotics. Decentralized control is free from difficulties due to complexity in design, debugging, data gathering and storage requirements, making it preferable for interconnected systems. Furthermore, as opposed to the centralized approach, it can be implemented with parallel processors. This approach deals with four decentralized control schemes, which are able to identify the robot dynamics. The training of each neural network is performed on-line using an extended Kalman filter (EKF). The first indirect decentralized control scheme applies the discrete-time block control approach, to formulate a nonlinear sliding manifold. The second direct decentralized neural control scheme is based on the backstepping technique, approximated by a high order neural network. The third control scheme applies a decentralized neural inverse optimal control for stabilization. The fourth decentralized neural inverse optimal control is designed for trajectory tracking. This comprehensive work on decentralized control of robot manipulators and mobile robots is intended for professors, students and professionals wanting to understand and apply advanced knowledge in their field of work. . T1 - Decentralized neural control :application to robotics / AU - Garcia-Hernandez, Ramon, AU - Lopez-Franco, Michel, AU - Sanchez, Edgar N., AU - Alanis, Alma Y., AU - Ruz-Hernandez, Jose A., VL - volume 96 CN - QA76.87 ID - 779470 KW - Neural networks (Computer science) KW - Nonlinear control theory. SN - 9783319533124 SN - 3319533126 TI - Decentralized neural control :application to robotics / LK - https://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-53312-4 UR - https://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-53312-4 ER -