000779718 000__ 05641cam\a2200517Ii\4500 000779718 001__ 779718 000779718 005__ 20230306143035.0 000779718 006__ m\\\\\o\\d\\\\\\\\ 000779718 007__ cr\nn\nnnunnun 000779718 008__ 170223s2017\\\\sz\\\\\\o\\\\\001\0\eng\d 000779718 019__ $$a973798529$$a973912099$$a981773658 000779718 020__ $$a9783319530352$$q(electronic book) 000779718 020__ $$a3319530356$$q(electronic book) 000779718 020__ $$z9783319530338 000779718 020__ $$z331953033X 000779718 0247_ $$a10.1007/978-3-319-53035-2$$2doi 000779718 035__ $$aSP(OCoLC)ocn973540050 000779718 035__ $$aSP(OCoLC)973540050$$z(OCoLC)973798529$$z(OCoLC)973912099$$z(OCoLC)981773658 000779718 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dEBLCP$$dGW5XE$$dN$T$$dIDEBK$$dYDX$$dNJR$$dOCLCF$$dCOO$$dIOG$$dAZU$$dUPM$$dXPJ 000779718 049__ $$aISEA 000779718 050_4 $$aTA418.9.P6 000779718 08204 $$a620.1/16$$223 000779718 08204 $$a620.11 000779718 24500 $$aSubmicron porous materials /$$cPaolo Bettotti, editor. 000779718 264_1 $$aCham, Switzerland :$$bSpringer,$$c2017. 000779718 300__ $$a1 online resource. 000779718 336__ $$atext$$btxt$$2rdacontent 000779718 337__ $$acomputer$$bc$$2rdamedia 000779718 338__ $$aonline resource$$bcr$$2rdacarrier 000779718 347__ $$atext file$$bPDF$$2rda 000779718 500__ $$aIncludes index. 000779718 5050_ $$aPreface; Contents; Contributors; 1 Structured and Surface-Modified Carbon Xerogel Electrodes for Capacitive Deionization; 1.1 Introduction; 1.2 Development of Porous Carbon Materials for Capacitive Deionization; 1.3 Effect of Carbon Xerogel Porosity on Salt Adsorption in Capacitive Deionization Cells; 1.4 Development of Microporous Carbon and Salt Adsorption Capacity Analysis; 1.5 Importance of Surface Chemistry for Porous Carbon Materials in Capacitive Deionization; 1.6 Creation of Surface-Functionalized Microporous and Mesoporous Materials; 1.7 Conclusions; References 000779718 5058_ $$a2 Carbon Gels and Their Applications: A Review of Patents2.1 Introduction; 2.2 Carbon Gels; 2.3 Improvements in the Synthesis Process of Carbon Gels; 2.3.1 Drying Methods; 2.3.2 Heating Methods; 2.4 Improvements in the Properties of Carbon Gels; 2.4.1 Nature and Concentration of the Main Reagents; 2.4.1.1 Melamine Formaldehyde Aerogels; 2.4.1.2 Phenolic-Furfural Aerogels; 2.4.1.3 Phenol-Formaldehyde Aerogels; 2.4.2 Introduction of Doping Agents and Additives; 2.4.2.1 Carbon Gels Doped with Other Forms of Carbon; 2.4.2.2 Carbon Gels Doped with Inorganic Materials 000779718 5058_ $$a2.4.2.3 Carbon Gels Doped with Metals2.4.2.4 Functionalization; 2.4.2.5 Introduction of Additives; 2.4.3 Thermal Treatments; 2.4.3.1 Carbonization; 2.4.3.2 Activation; 2.5 Applications; 2.5.1 Electronic and Energy Storage Applications; 2.5.2 Catalyst Support; 2.5.3 Gas Storage; 2.5.4 Coatings; 2.5.5 Other Applications; 2.6 Conclusions; References; 3 Robust Mesoporous Polymers Derived from Cross-Linked Block Polymer Precursors; 3.1 Introduction; 3.1.1 How to Derive Mesoporous Polymers from Block Polymer Precursors; 3.1.2 Pore Stability of Mesoporous Polymers 000779718 5058_ $$a3.1.3 Robust Mesoporous Polymers Derived from Cross-Linked Block Polymer Precursors3.1.3.1 Cross-Linking Reaction Utilizing Functional Groups in the Matrix Block; 3.1.3.2 Cross-Linking Reaction Utilizing Functional Groups Introduced by Copolymerization; 3.1.3.3 In Situ Cross-Linking by Copolymerization of a Cross-Linker with the Matrix Monomer; 3.1.3.4 Thermosetting Polymerization in the Presence of Block Polymer Precursors; 3.2 Conclusions; References; 4 Melt-Stretching Polyolefin Microporous Membrane; 4.1 Introduction; 4.2 Melt-Stretching Polypropylene Microporous Membrane 000779718 5058_ $$a4.2.1 Raw Material Characteristics4.2.2 Melt-Stretching-Induced Crystallization; 4.2.3 Annealing; 4.2.4 Cold Stretching; 4.2.5 Hot Stretching; 4.2.6 Heat Setting; 4.2.7 The Whole Change During the Fabrication of PP Microporous Membrane; 4.3 Melt-Stretching Polyethylene Microporous Membrane; 4.3.1 Materials Characteristics; 4.3.2 Annealing; 4.3.3 The Whole Structure Change During the Preparation of PE Microporous Membrane; 4.4 PP/PE/PP Trilayer Microporous Membrane; 4.5 Compound Microporous Membrane; 4.6 Ceramic-Coated Membrane; 4.7 Polymer Powder Coated Membrane; 4.8 Future Prospective 000779718 506__ $$aAccess limited to authorized users. 000779718 520__ $$aThis book covers the latest research on porous materials at the submicron scale and inspires readers to better understand the porosity of materials, as well as to develop innovative new materials. A comprehensive range of materials are covered, including carbon-based and organic-based porous materials, porous anodic alumina, silica, and titania-based sol-gel materials. The fabrication, characterization, and applications of these materials are all explored, with applications ranging from sensors, thermoelectrics, catalysis, energy storage, to photovoltaics. Also of practical use for readers are chapters that describe the basics of porous silicon fabrication and its use in optical sensing and drug delivery applications; how thermal transport is affected in porous materials; how to model diffusion in porous materials; and a unique chapter on an innovative spectroscopic technique used to characterize materials' porosity. This is an ideal book for graduate students, researchers, and professionals who work with porous materials. 000779718 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed March 1, 2017). 000779718 650_0 $$aPorous materials. 000779718 7001_ $$aBettotti, Paolo,$$eeditor. 000779718 77608 $$iPrint version:$$z331953033X$$z9783319530338$$w(OCoLC)967373867 000779718 852__ $$bebk 000779718 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-53035-2$$zOnline Access$$91397441.1 000779718 909CO $$ooai:library.usi.edu:779718$$pGLOBAL_SET 000779718 980__ $$aEBOOK 000779718 980__ $$aBIB 000779718 982__ $$aEbook 000779718 983__ $$aOnline 000779718 994__ $$a92$$bISE