000779972 000__ 03731cam\a2200541Ii\4500 000779972 001__ 779972 000779972 005__ 20230306143048.0 000779972 006__ m\\\\\o\\d\\\\\\\\ 000779972 007__ cr\nn\nnnunnun 000779972 008__ 170306t20172017sz\a\\\\ob\\\\000\0\eng\d 000779972 019__ $$a974759626$$a974969589$$a975036439$$a975138158$$a975463371$$a975976760$$a976142545$$a984847119 000779972 020__ $$a9783319288321$$q(electronic book) 000779972 020__ $$a3319288326$$q(electronic book) 000779972 020__ $$z9783319288314 000779972 020__ $$z3319288318 000779972 0247_ $$a10.1007/978-3-319-28832-1$$2doi 000779972 035__ $$aSP(OCoLC)ocn974641968 000779972 035__ $$aSP(OCoLC)974641968$$z(OCoLC)974759626$$z(OCoLC)974969589$$z(OCoLC)975036439$$z(OCoLC)975138158$$z(OCoLC)975463371$$z(OCoLC)975976760$$z(OCoLC)976142545$$z(OCoLC)984847119 000779972 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dGW5XE$$dIDEBK$$dYDX$$dOCLCF$$dNJR$$dIOG$$dCOO$$dAZU$$dUPM 000779972 049__ $$aISEA 000779972 050_4 $$aQA927 000779972 08204 $$a515/.35$$223 000779972 24500 $$aModern solvers for Helmholtz problems /$$cDomenico Lahaye, Jok Tang, Kees Vuik, editors. 000779972 264_1 $$aCham, Switzerland :$$bBirkhäuser,$$c[2017] 000779972 264_4 $$c©2017 000779972 300__ $$a1 online resource. 000779972 336__ $$atext$$btxt$$2rdacontent 000779972 337__ $$acomputer$$bc$$2rdamedia 000779972 338__ $$aonline resource$$bcr$$2rdacarrier 000779972 347__ $$atext file$$bPDF$$2rda 000779972 4901_ $$aGeosystems Mathematics,$$x2510-1544 000779972 504__ $$aIncludes bibliographical references. 000779972 5050_ $$aI Algorithms: new developments and analysis -- II Algorithms: practical methods and implementations -- III Industrial applications. . 000779972 506__ $$aAccess limited to authorized users. 000779972 520__ $$aThis edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts: new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications. The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but is hard to solve. In order to approximate the solution of the problem numerical methods are needed. First a discretization is done. Various methods can be used: (high order) Finite Difference Method, Finite Element Method, Discontinuous Galerkin Method and Boundary Element Method. The resulting linear system is large, where the size of the problem increases with increasing frequency. Due to higher frequencies the seismic images need to be more detailed and, therefore, lead to numerical problems of a larger scale. To solve these three dimensional problems fast and robust, iterative solvers are required. However for standard iterative methods the number of iterations to solve the system becomes too large. For these reason a number of new methods are developed to overcome this hurdle. The book is meant for researchers both from academia and industry and graduate students. A prerequisite is knowledge on partial differential equations and numerical linear algebra. 000779972 588__ $$aVendor-supplied metadata. 000779972 650_0 $$aHelmholtz equation$$xNumerical solutions. 000779972 650_0 $$aHelmholtz equation. 000779972 650_0 $$aWave equation. 000779972 7001_ $$aLahaye, Domenico,$$eeditor. 000779972 7001_ $$aTang, Jok,$$eeditor. 000779972 7001_ $$aVuik, Kees,$$eeditor. 000779972 77608 $$iPrint version:$$z3319288318$$z9783319288314$$w(OCoLC)932096015 000779972 830_0 $$aGeosystems Mathematics. 000779972 852__ $$bebk 000779972 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-28832-1$$zOnline Access$$91397441.1 000779972 909CO $$ooai:library.usi.edu:779972$$pGLOBAL_SET 000779972 980__ $$aEBOOK 000779972 980__ $$aBIB 000779972 982__ $$aEbook 000779972 983__ $$aOnline 000779972 994__ $$a92$$bISE