Linked e-resources

Details

Contributors; 1 Energy Harvesting: Breakthrough Technologies Through Polymer Composites; Abstract; 1 Introduction; 1.1 Energy Harvesting for Alternatives to Fossil Fuel; 1.2 Energy Harvesting for Powering Sensors and Electronics; 2 Photovoltaic Technologies; 2.1 Role of Nanostructured Materials and Conducting Polymers in Various PV Technologies; 2.1.1 Organic Polymer Solar Cells; Device Physics and Active Layers Involved in Energy Conversion; Device Physics and Active Layers Involved in Energy Conversion

BJH OPV Cells: Focus on (Poly(3-hexylthiophene) (P3HT)) and MDMO-PPV (Poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylene]-alt-(vinylene)) Polymer Composites in OPVs2.2 The Bigger Picture: Maximizing Cell and Module Efficiency Through Inorganic-Organic Hybrid Structures; 2.2.1 Charge Separation at the Organic-Inorganic Interface; 2.2.2 Nanostructured Architecture of Hybrid Cells; 2.2.3 Key Components and Optimization for Enhanced Device Performance; 3 Thermoelectric Power Generation; 3.1 The Physics of a Working Thermoelectric Energy Harvester

3.2 Historical Implementation of Inorganic Materials: Evolution, Challenges Faced, and Limitations3.3 Applications of Various Conductive Polymers for Organic Active Layers; 3.3.1 Ease of Manufacturability; 3.3.2 Tunability: Effect of Doping Level on the Thermoelectric Properties of Conductive Polymers; Copolymers and Polymer Blends: Further Methods to Tune Properties; Ability to Utilize Additives and Their Respective Advantages; 4 Mechanical Vibration-Based Energy Harvesting; 4.1 Electromagnetic Energy Harvesters; 4.1.1 Operating Principle and Challenges in Miniaturization of Device

4.1.2 Fabrication Using Polymer NanocompositesFabrication Methodologies; Geometry of Harvesters; Working Principles Behind Energy Capture; 4.1.3 Challenges and Work Underway; 4.2 Piezoelectric Energy Harvesters; 4.2.1 Operating Principal Utilizing Two Categories of Piezogenerators; Single-Phase Piezoceramics; Piezocomposites; Piezopolymers; Voided Charge Polymers; 4.2.2 Comparison and Advantage of Piezoelectric Polymers Over Inorganic Piezoelectric Materials; 4.2.3 Conclusions, Challenges, and Future Outlook; References; 2 Energy Harvesting from Crystalline and Conductive Polymer Composites

Abstract1 Introduction; 2 Electroactive Polymers (EAPs); 3 Energy Harvesting from Ferroelectric Polymers; 3.1 Electromechanical Properties of PVDF; 3.2 Energy Harvesting Using PVDF; 3.2.1 Kinetic Energy Harvesters Using PVDF; 3.2.2 Kinematic Energy Harvesters Using PVDF; 3.2.3 Micro- and Nanogenerators Based on PVDF Composites; 3.3 Energy Harvesting Using Cellulose Nanocrystals; 4 Energy Harvesting from Electrostrictive Polymers; 4.1 Effect of Intrinsic Mechanisms; 4.2 Tackling Quadratic Dependence of Strain on Electric Field; 4.3 Energy Harvesting Using Polyurethane Transducers

Browse Subjects

Show more subjects...

Statistics

from
to
Export