000780047 000__ 03969cam\a2200517Ii\4500 000780047 001__ 780047 000780047 005__ 20230306143052.0 000780047 006__ m\\\\\o\\d\\\\\\\\ 000780047 007__ cr\nn\nnnunnun 000780047 008__ 170309s2017\\\\sz\\\\\\o\\\\\000\0\eng\d 000780047 019__ $$a974746916$$a981978617$$a982018269$$a985336498 000780047 020__ $$a9783319468525$$q(electronic book) 000780047 020__ $$a3319468529$$q(electronic book) 000780047 020__ $$z9783319468518 000780047 020__ $$z3319468510 000780047 0247_ $$a10.1007/978-3-319-46852-5$$2doi 000780047 035__ $$aSP(OCoLC)ocn974894041 000780047 035__ $$aSP(OCoLC)974894041$$z(OCoLC)974746916$$z(OCoLC)981978617$$z(OCoLC)982018269$$z(OCoLC)985336498 000780047 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dYDX$$dIDEBK$$dOCLCF$$dUAB$$dNJR$$dUPM$$dIOG 000780047 049__ $$aISEA 000780047 050_4 $$aQA251.3 000780047 08204 $$a512/.46$$223 000780047 24500 $$aBrauer groups and obstruction problems :$$bModuli spaces and arithmetic /$$cAsher Auel, Brendan Hassett, Anthony Várilly-Alvarado, Bianca Viray, editors. 000780047 264_1 $$aCham, Switzerland :$$bBirkhäuser,$$c2017. 000780047 300__ $$a1 online resource (ix, 247 pages). 000780047 336__ $$atext$$btxt$$2rdacontent 000780047 337__ $$acomputer$$bc$$2rdamedia 000780047 338__ $$aonline resource$$bcr$$2rdacarrier 000780047 4901_ $$aProgress in mathematics,$$x0743-1643 ;$$vvolume 320 000780047 504__ $$aIncludes bibliographical references. 000780047 5050_ $$aThe Brauer group is not a derived invariant -- Twisted derived equivalences for affine schemes -- Rational points on twisted K3 surfaces and derived equivalences -- Universal unramified cohomology of cubic fourfolds containing a plane -- Universal spaces for unramified Galois cohomology -- Rational points on K3 surfaces and derived equivalence -- Unramified Brauer classes on cyclic covers of the projective plane -- Arithmetically Cohen-Macaulay bundles on cubic fourfolds containing a plane -- Brauer groups on K3 surfaces and arithmetic applications -- On a local-global principle for H3 of function fields of surfaces over a finite field -- Cohomology and the Brauer group of double covers. 000780047 506__ $$aAccess limited to authorized users. 000780047 520__ $$aThe contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory. Contributors: · Nicolas Addington · Benjamin Antieau · Kenneth Ascher · Asher Auel · Fedor Bogomolov · Jean-Louis Colliot-Thélène · Krishna Dasaratha · Brendan Hassett · Colin Ingalls · Martí Lahoz · Emanuele Macrì · Kelly McKinnie · Andrew Obus · Ekin Ozman · Raman Parimala · Alexander Perry · Alena Pirutka · Justin Sawon · Alexei N. Skorobogatov · Paolo Stellari · Sho Tanimoto · Hugh Thomas · Yuri Tschinkel · Anthony Várilly-Alvarado · Bianca Viray · Rong Zhou. 000780047 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed March 9, 2017). 000780047 650_0 $$aBrauer groups. 000780047 650_0 $$aModuli theory. 000780047 7001_ $$aAuel, Asher,$$eeditor. 000780047 7001_ $$aHassett, Brendan,$$eeditor. 000780047 7001_ $$aVárilly-Alvarado, Anthony,$$eeditor. 000780047 7001_ $$aViray, Bianca,$$eeditor. 000780047 77608 $$iPrint version:$$z3319468510$$z9783319468518$$w(OCoLC)957533204 000780047 830_0 $$aProgress in mathematics (Boston, Mass.) ;$$vv. 320. 000780047 852__ $$bebk 000780047 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-46852-5$$zOnline Access$$91397441.1 000780047 909CO $$ooai:library.usi.edu:780047$$pGLOBAL_SET 000780047 980__ $$aEBOOK 000780047 980__ $$aBIB 000780047 982__ $$aEbook 000780047 983__ $$aOnline 000780047 994__ $$a92$$bISE