000780335 000__ 05062cam\a2200565Ii\4500 000780335 001__ 780335 000780335 005__ 20230306143003.0 000780335 006__ m\\\\\o\\d\\\\\\\\ 000780335 007__ cr\nn\nnnunnun 000780335 008__ 170322s2017\\\\au\\\\\\o\\\\\000\0\eng\d 000780335 019__ $$a984878662 000780335 020__ $$a9783709111574$$q(electronic book) 000780335 020__ $$a3709111579$$q(electronic book) 000780335 020__ $$z9783709111567 000780335 0247_ $$a10.1007/978-3-7091-1157-4$$2doi 000780335 035__ $$aSP(OCoLC)ocn978273108 000780335 035__ $$aSP(OCoLC)978273108$$z(OCoLC)984878662 000780335 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dEBLCP$$dN$T$$dGW5XE$$dOCLCF$$dYDX$$dUAB$$dIOG$$dAZU$$dUPM 000780335 049__ $$aISEA 000780335 050_4 $$aTK7871.85 000780335 08204 $$a621.3815/2$$223 000780335 1001_ $$aBaranov, Pavel G.,$$eauthor. 000780335 24510 $$aMagnetic resonance of semiconductors and their nanostructures :$$bbasic and advanced applications /$$cPavel G. Baranov [and 3 others]. 000780335 264_1 $$aWien, Austria :$$bSpringer,$$c2017. 000780335 300__ $$a1 online resource. 000780335 336__ $$atext$$btxt$$2rdacontent 000780335 337__ $$acomputer$$bc$$2rdamedia 000780335 338__ $$aonline resource$$bcr$$2rdacarrier 000780335 347__ $$atext file$$bPDF$$2rda 000780335 4901_ $$aSpringer series in materials science ;$$vvolume 253 000780335 5050_ $$aPreface; Contents; 1 Basic Concepts of Electron Paramagnetic Resonance; 1.1 Magnetic Dipole; 1.1.1 Magnetic Dipole Moment; 1.1.2 Magnetic Field Produced by a Magnetic Dipole Moment; 1.1.3 Magnetogyric Ratio; 1.1.4 Electronic g-Factor of the Orbital and Spin Magnetic Moments; 1.2 Magnetic Moment of the Electron Shell in a Free Atom or Ion; 1.2.1 Electronic g-Factor of the Orbital and Spin Magnetic Moments; 1.2.2 Spin-Orbit Interaction; 1.2.3 Landé Interval Rule and Landé g-Factor; 1.3 Magnetic Dipole in a Magnetic Field; 1.3.1 Electron Zeeman Interaction 000780335 5058_ $$a1.3.2 Interaction Between the Magnetic Dipoles1.4 Populations of Energy Levels for Magnetic Moments in a Magnetic Field in Thermal Equilibrium; 1.4.1 Magnetization of the Paramagnetic Materials, Magnetic Susceptibility; 1.4.2 Curie's Law; 1.5 Magnetic Resonance Conditions; 1.5.1 Probability of Transitions Between Levels for EPR (NMR); 1.5.2 Step-up and Step-down Spin Operators; 1.5.3 Selection Rules; 1.5.4 Changing the Populations of Spin Levels by Resonant Microwave Field and Spin Relaxation; Absorption (Emission) of Electro-magnetic Energy in EPR (NMR) Experiments; 1.6 Bloch Equations 000780335 5058_ $$a1.6.1 Classical Behavior of the Magnetic Moment in a Magnetic Field1.6.2 Bloch Equations. Two Spin Relaxation Times Introduced for Longitudinal (T1) and Transverse (T2) Spin Relaxation; 1.7 Hydrogen Atom in a Magnetic Field; 1.7.1 Hyperfine Interaction in the Ground State of a Hydrogen Atom; 1.7.2 Hamiltonian and Energy Levels for the Hydrogen Atom in a Magnetic Field (Breit-Rabi Formula); Selection Rules; 1.7.3 Uncoupled and Coupled Bases for Angular Momenta; 1.7.4 Energy Levels for the Deuterium Atom and Atoms and Ions with One Unpaired s-Electron in the Ground-State (2S1/2 State) 000780335 5058_ $$a1.7.5 Hydrogen Atoms in Excited States. Spin-Orbit Interaction1.8 EPR in Condensed Matter; 1.8.1 Atoms and Ions in the S-state (L = 0) in the Crystal Field; 1.8.2 Transition Elements in Condensed Matter. Crystal Field Approach; Classification of Crystal Fields; 1.9 The Case of Intermediate Crystal Field; 1.9.1 Ground-State Terms for Transition Elements with Unpaired d-Electrons; 1.9.2 Quenching of the Orbital Angular Momentum in the Orbitally Nondegenerate Singlet State; 1.9.3 The Spin Hamiltonian; 1.9.4 Application to an Orbital Triplet in the Ground State; 1.10 Anisotropic g-Factor 000780335 5058_ $$a1.11 Fine Structure1.11.1 Contribution of Dipole-Dipole Interaction Between Two Electron Spins to the Fine Structure; 1.11.2 Energy Levels in Magnetic Field of Systems with Half-Integer and Integer Spins. Kramers Doublets; 1.12 Anisotropic Hyperfine Interaction; 1.13 Case of a Weak Crystal Field or the Rare-Earth Arrangement; 1.13.1 Terms and Subterms of the Ground States of Rare-Earth Elements with Unpaired f-Electrons; 1.13.2 Energy Levels and Wave Functions for the Ground State of Rare-Earth Ions in a Magnetic Field; References; 2 Fundamentals of EPR Related Methods 000780335 506__ $$aAccess limited to authorized users. 000780335 520__ $$aPresenting for the first time novelties such as single defects MR as well as state-of-the-art HF pulse methods such as EPR and ENDOR, this volume focuses on a range of magnetic resonance methods and their applications in solids such as semiconductors. 000780335 588__ $$aVendor-supplied metadata. 000780335 650_0 $$aSemiconductors. 000780335 650_0 $$aMagnetic resonance. 000780335 650_0 $$aNanostructures. 000780335 7001_ $$aBardeleben, Hans Jürgen von,$$eauthor. 000780335 7001_ $$aJelezko, Fedor,$$eauthor. 000780335 7001_ $$aWrachtrup, Jörg,$$eauthor. 000780335 77608 $$iPrint version:$$z9783709111567 000780335 830_0 $$aSpringer series in materials science ;$$vvol. 253. 000780335 852__ $$bebk 000780335 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-7091-1157-4$$zOnline Access$$91397441.1 000780335 909CO $$ooai:library.usi.edu:780335$$pGLOBAL_SET 000780335 980__ $$aEBOOK 000780335 980__ $$aBIB 000780335 982__ $$aEbook 000780335 983__ $$aOnline 000780335 994__ $$a92$$bISE