000780510 000__ 03249cam\a2200493Ii\4500
000780510 001__ 780510
000780510 005__ 20230306143142.0
000780510 006__ m\\\\\o\\d\\\\\\\\
000780510 007__ cr\nn\nnnunnun
000780510 008__ 170403s2017\\\\sz\a\\\\ob\\\\000\0\eng\d
000780510 019__ $$a980736048$$a980797266$$a981241445$$a981699853$$a981804676$$a984847334
000780510 020__ $$a9783319563060$$q(electronic book)
000780510 020__ $$a3319563068$$q(electronic book)
000780510 020__ $$z9783319563053
000780510 020__ $$z331956305X
000780510 0247_ $$a10.1007/978-3-319-56306-0$$2doi
000780510 035__ $$aSP(OCoLC)ocn980871419
000780510 035__ $$aSP(OCoLC)980871419$$z(OCoLC)980736048$$z(OCoLC)980797266$$z(OCoLC)981241445$$z(OCoLC)981699853$$z(OCoLC)981804676$$z(OCoLC)984847334
000780510 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dEBLCP$$dYDX$$dNJR$$dUAB$$dIOG$$dOCLCF$$dCOO$$dAZU$$dUPM
000780510 049__ $$aISEA
000780510 050_4 $$aQA377
000780510 0820_ $$a518/.2$$223
000780510 1001_ $$aLottes, James,$$eauthor.
000780510 24510 $$aTowards robust algebraic multigrid methods for nonsymmetric problems /$$cJames Lottes.
000780510 264_1 $$aCham, Switzerland :$$bSpringer,$$c2017.
000780510 300__ $$a1 online resource (x, 131 pages) :$$billustrations.
000780510 336__ $$atext$$btxt$$2rdacontent
000780510 337__ $$acomputer$$bc$$2rdamedia
000780510 338__ $$aonline resource$$bcr$$2rdacarrier
000780510 347__ $$atext file$$bPDF$$2rda
000780510 4901_ $$aSpringer theses,$$x2190-5053
000780510 500__ $$a"Doctoral thesis accepted by University of Oxford, UK."
000780510 504__ $$aIncludes bibliographical references.
000780510 5050_ $$aIntroduction -- Theoretical Foundations -- Form Absolute Value -- Convergence Theory -- Application to a New AMG Method -- Conclusions.
000780510 506__ $$aAccess limited to authorized users.
000780510 520__ $$aThis thesis presents a rigorous, abstract analysis of multigrid methods for positive nonsymmetric problems, particularly suited to algebraic multigrid, with a completely new approach to nonsymmetry which is based on a new concept of absolute value for nonsymmetric operators. Multigrid, and in particular algebraic multigrid, has become an indispensable tool for the solution of discretizations of partial differential equations. While used in both the symmetric and nonsymmetric cases, the theory for the nonsymmetric case has lagged substantially behind that for the symmetric case. This thesis closes some of this gap, presenting a major and highly original contribution to an important problem of computational science. The new approach to nonsymmetry will be of interest to anyone working on the analysis of discretizations of nonsymmetric operators, even outside the context of multigrid. The presentation of the convergence theory may interest even those only concerned with the symmetric case, as it sheds some new light on and extends existing results.
000780510 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed April 3, 2017).
000780510 650_0 $$aMultigrid methods (Numerical analysis)
000780510 77608 $$iPrint version:$$aLottes, James$$tTowards Robust Algebraic Multigrid Methods for Nonsymmetric Problems$$dCham : Springer International Publishing,c2017$$z9783319563053
000780510 830_0 $$aSpringer theses.
000780510 852__ $$bebk
000780510 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-56306-0$$zOnline Access$$91397441.1
000780510 909CO $$ooai:library.usi.edu:780510$$pGLOBAL_SET
000780510 980__ $$aEBOOK
000780510 980__ $$aBIB
000780510 982__ $$aEbook
000780510 983__ $$aOnline
000780510 994__ $$a92$$bISE