000780510 000__ 03249cam\a2200493Ii\4500 000780510 001__ 780510 000780510 005__ 20230306143142.0 000780510 006__ m\\\\\o\\d\\\\\\\\ 000780510 007__ cr\nn\nnnunnun 000780510 008__ 170403s2017\\\\sz\a\\\\ob\\\\000\0\eng\d 000780510 019__ $$a980736048$$a980797266$$a981241445$$a981699853$$a981804676$$a984847334 000780510 020__ $$a9783319563060$$q(electronic book) 000780510 020__ $$a3319563068$$q(electronic book) 000780510 020__ $$z9783319563053 000780510 020__ $$z331956305X 000780510 0247_ $$a10.1007/978-3-319-56306-0$$2doi 000780510 035__ $$aSP(OCoLC)ocn980871419 000780510 035__ $$aSP(OCoLC)980871419$$z(OCoLC)980736048$$z(OCoLC)980797266$$z(OCoLC)981241445$$z(OCoLC)981699853$$z(OCoLC)981804676$$z(OCoLC)984847334 000780510 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dEBLCP$$dYDX$$dNJR$$dUAB$$dIOG$$dOCLCF$$dCOO$$dAZU$$dUPM 000780510 049__ $$aISEA 000780510 050_4 $$aQA377 000780510 0820_ $$a518/.2$$223 000780510 1001_ $$aLottes, James,$$eauthor. 000780510 24510 $$aTowards robust algebraic multigrid methods for nonsymmetric problems /$$cJames Lottes. 000780510 264_1 $$aCham, Switzerland :$$bSpringer,$$c2017. 000780510 300__ $$a1 online resource (x, 131 pages) :$$billustrations. 000780510 336__ $$atext$$btxt$$2rdacontent 000780510 337__ $$acomputer$$bc$$2rdamedia 000780510 338__ $$aonline resource$$bcr$$2rdacarrier 000780510 347__ $$atext file$$bPDF$$2rda 000780510 4901_ $$aSpringer theses,$$x2190-5053 000780510 500__ $$a"Doctoral thesis accepted by University of Oxford, UK." 000780510 504__ $$aIncludes bibliographical references. 000780510 5050_ $$aIntroduction -- Theoretical Foundations -- Form Absolute Value -- Convergence Theory -- Application to a New AMG Method -- Conclusions. 000780510 506__ $$aAccess limited to authorized users. 000780510 520__ $$aThis thesis presents a rigorous, abstract analysis of multigrid methods for positive nonsymmetric problems, particularly suited to algebraic multigrid, with a completely new approach to nonsymmetry which is based on a new concept of absolute value for nonsymmetric operators. Multigrid, and in particular algebraic multigrid, has become an indispensable tool for the solution of discretizations of partial differential equations. While used in both the symmetric and nonsymmetric cases, the theory for the nonsymmetric case has lagged substantially behind that for the symmetric case. This thesis closes some of this gap, presenting a major and highly original contribution to an important problem of computational science. The new approach to nonsymmetry will be of interest to anyone working on the analysis of discretizations of nonsymmetric operators, even outside the context of multigrid. The presentation of the convergence theory may interest even those only concerned with the symmetric case, as it sheds some new light on and extends existing results. 000780510 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed April 3, 2017). 000780510 650_0 $$aMultigrid methods (Numerical analysis) 000780510 77608 $$iPrint version:$$aLottes, James$$tTowards Robust Algebraic Multigrid Methods for Nonsymmetric Problems$$dCham : Springer International Publishing,c2017$$z9783319563053 000780510 830_0 $$aSpringer theses. 000780510 852__ $$bebk 000780510 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-56306-0$$zOnline Access$$91397441.1 000780510 909CO $$ooai:library.usi.edu:780510$$pGLOBAL_SET 000780510 980__ $$aEBOOK 000780510 980__ $$aBIB 000780510 982__ $$aEbook 000780510 983__ $$aOnline 000780510 994__ $$a92$$bISE