000780557 000__ 07921cam\a2200529Ii\4500 000780557 001__ 780557 000780557 005__ 20230306143145.0 000780557 006__ m\\\\\o\\d\\\\\\\\ 000780557 007__ cr\nn\nnnunnun 000780557 008__ 170403s2017\\\\si\a\\\\o\\\\\000\0\eng\d 000780557 019__ $$a981698081$$a981805267$$a984882435 000780557 020__ $$a9789811030840$$q(electronic book) 000780557 020__ $$a9811030847$$q(electronic book) 000780557 020__ $$z9789811030833 000780557 020__ $$z9811030839 000780557 0247_ $$a10.1007/978-981-10-3084-0$$2doi 000780557 035__ $$aSP(OCoLC)ocn980875012 000780557 035__ $$aSP(OCoLC)980875012$$z(OCoLC)981698081$$z(OCoLC)981805267$$z(OCoLC)984882435 000780557 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dGW5XE$$dEBLCP$$dN$T$$dUAB$$dYDX$$dOCLCQ$$dIOG$$dOCLCF$$dCOO$$dAZU$$dUPM 000780557 049__ $$aISEA 000780557 050_4 $$aTD192.75 000780557 08204 $$a628.4$$223 000780557 24500 $$aPhytoremediation potential of bioenergy plants /$$cKuldeep Bauddh, Bhaskar Singh, John Korstad, editors. 000780557 264_1 $$aSingapore :$$bSpringer,$$c2017. 000780557 300__ $$a1 online resource (xx, 472 pages) :$$billustrations. 000780557 336__ $$atext$$btxt$$2rdacontent 000780557 337__ $$acomputer$$bc$$2rdamedia 000780557 338__ $$aonline resource$$bcr$$2rdacarrier 000780557 347__ $$atext file$$bPDF$$2rda 000780557 5050_ $$aDedication; Foreword; Preface; Acknowledgement; Contents; Contributors; About the Editors; 1: Phytoremediation: AßMultidimensional andßEcologically Viable Practice forßtheßCleanup ofßEnvironmental Contaminants; 1.1 Introduction; 1.1.1 Contaminants: Sources, Types andßEffects; 1.1.2 Heavy Metals; 1.1.3 Organic Pollutants; 1.1.4 Radioactive Contaminants; 1.2 Contaminant Remediation Techniques; 1.3 Phytoremediation: AßSuccessful andßEnvironment-ƯFriendly Approach; 1.3.1 Types ofßPhytoremediation; 1.3.1.1 Phytoextraction; 1.3.1.2 Phytostabilization; 1.3.1.3 Phytofiltration. 000780557 5058_ $$a1.3.1.4 Phytovolatilization1.3.2 Mechanism ofßPhytoremediation; 1.3.2.1 Factors That Affect Uptake Mechanisms; 1.3.2.1.1 Plant Species; 1.3.2.1.2 Properties ofßGrowing Medium; 1.3.2.1.3 Root Zone; 1.3.2.1.4 Uptake Mechanism by Vegetative Parts; 1.3.2.1.5 Chelating Agents; 1.3.3 Indices Used forßAssessment ofßPhytoremediation Potential; 1.3.4 Different Aspects ofßPhytoremediation; 1.3.4.1 Application ofßEdible Crops; 1.3.4.2 Application ofßWeeds; 1.3.4.3 Application ofßTrees; 1.3.4.4 Application ofßBioenergy Crops; 1.3.4.5 Aromatic Plants Used inßPhytoremediation. 000780557 5058_ $$a1.3.4.6 Plants asßHyperaccumulators1.3.5 Application ofßChemical andßBiological Amendments toßEnhance Phytoremediation; 1.3.6 Role ofßBacteria inßEnhancement ofßPhytoremediation Potential ofßPlants; 1.3.7 Role ofßFungi inßEnhancement ofßPhytoremediation Potential ofßPlants; 1.3.8 Technological Interventions inßPlants Used forßPhytoremediation; 1.3.8.1 Transgenic Plants andßPhytoremediation; 1.3.8.2 Role ofßElectrokinesis forßEnhanced Phytoremediation; 1.3.9 Multitasking Approach ofßPhytoremediation; 1.3.10 Economic Feasibility ofßPhytoremediation OverßConventional Methods. 000780557 5058_ $$a1.3.11 Constraints ofßPhytoremediation1.4 Conclusions; References; 2: Bioenergy: AßSustainable Approach forßCleaner Environment; 2.1 Bioenergy; 2.2 Bioenergy Forms; 2.2.1 Combustion: Heat andßPower; 2.2.2 Gaseous Energy Forms; 2.2.3 Liquid Biofuels; 2.3 Plant-Based Feedstocks forßBioenergy; 2.3.1 Oil Crops; 2.3.2 Woody Feedstock; 2.3.3 Energy Crops; 2.4 Microorganisms forßBioenergy; 2.4.1 Microalgae; 2.4.2 Bacteria; 2.4.3 Fungus; 2.5 Bioenergy fromßWaste; 2.5.1 Agro-industrial Waste Biomass; 2.5.2 Sewage Sludge; 2.5.3 Animal Waste. 000780557 5058_ $$a2.6 Environmental andßSocio-economic Significance2.7 Coupling Phytoremediation withßBioenergy: AnßIntegrated Biorefinery Approach; 2.8 Conclusion; References; 3: Phytoremediation ofßHeavy Metal-ƯContaminated Soil Using Bioenergy Crops; 3.1 Introduction; 3.2 Bioenergy Crops; 3.3 Heavy Metals andßTheir Remediation Using Bioenergy Crops; 3.3.1 Willow; 3.3.2 Poplar; 3.3.3 Jatropha; 3.3.4 Castor; 3.3.5 Grasses; 3.4 Strategies toßIncrease Phytoremediation Potential ofßBioenergy Crops; 3.4.1 Metal Solubilizing Agent; 3.4.2 Symbiotic Endophytic Microorganisms; 3.4.3 Genetic Engineering. 000780557 506__ $$aAccess limited to authorized users. 000780557 520__ $$aThe globally escalating population necessitates production of more goods and services to fulfil the expanding demands of human beings which resulted in urbanization and industrialization. Uncontrolled industrialization caused two major problems – energy crisis and accelerated environmental pollution throughout the world. Presently, there are technologies which have been proposed or shown to tackle both the problems. Researchers continue to seek more cost effective and environmentally beneficial pathways for problem solving. Plant kingdom comprises of species which have the potential to resolve the couple problem of pollution and energy. Plants are considered as a potential feedstock for development of renewable energy through biofuels. Another important aspect of plants is their capacity to sequester carbon dioxide and absorb, degrade, and stabilize environmental pollutants such as heavy metals, poly-aromatic hydrocarbons, poly-aromatic biphenyls, radioactive materials, and other chemicals. Thus, plants may be used to provide renewable energy generation and pollution mitigation. An approach that could amalgamate the two aspects can be achieved through phytoremediation (using plants to clean up polluted soil and water), and subsequent generation of energy from the phyto-remediator plants. This would be a major advance in achieving sustainability that focuses on optimizing ‘people’ (social issues), ‘planet’ (environmental issues), and ‘profit’ (financial issues). The “Phytoremediation-Cellulosic Biofuels” (PCB) process will be socially beneficial through reducing pollution impacts on people, ecologically beneficial through pollution abatement, and economically viable through providing revenue that supplies an energy source that is renewable and also provides less dependence on importing foreign energy (energy-independence). The utilization of green plants for pollution remediation and energy production will also tackle some other important global concerns like global climate change, ocean acidification, and land degradation through carbon sequestration, reduced emissions of other greenhouse gases, restoration of degraded lands and waters, and more. This book addresses the overall potential of major plants that have the potential to fulfil the dual purposes of phytoremediation and energy generation. The non-edible bioenergy plants that are explored for this dual objective includeJatropha curcas, Ricinus communis, Leucaena leucocephalla, Milletia pinnata, Canabis sativa, Azadirachta indica, andAcacia nilotica. The book addresses all possible aspects of phyto-remediaton and energy generation in a holistic way. The contributors are one of most authoritative experts in the field and have covered and compiled the best content most comprehensively. The book is going to be extremely useful for researchers in the area, research students, academicians and also for policy makers for an inclusive understanding and assessment of potential in plant kingdom to solve the dual problem of energy and pollution. 000780557 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed April 7, 2017). 000780557 650_0 $$aPhytoremediation. 000780557 650_0 $$aBiomass energy. 000780557 7001_ $$aBauddh, Kuldeep,$$eeditor. 000780557 7001_ $$aSingh, Bhaskar$$c(Environmental sciences teacher),$$eeditor. 000780557 7001_ $$aKorstad, John,$$eeditor. 000780557 77608 $$iPrint version:$$tPhytoremediation potential of bioenergy plants.$$dSingapore : Springer, 2017$$z9811030839$$z9789811030833$$w(OCoLC)960833535 000780557 852__ $$bebk 000780557 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-981-10-3084-0$$zOnline Access$$91397441.1 000780557 909CO $$ooai:library.usi.edu:780557$$pGLOBAL_SET 000780557 980__ $$aEBOOK 000780557 980__ $$aBIB 000780557 982__ $$aEbook 000780557 983__ $$aOnline 000780557 994__ $$a92$$bISE