Linked e-resources
Details
Table of Contents
3.1. A convergence result for càdlàg functions3.2. Convergence of characteristic curves; 3.3. Convergence of approximate solutions; 4. Conclusion; Acknowledgement; References; Hilbert Space Embeddings for Gelfand-Shilov and Pilipović Spaces; 0. Introduction; 1. Preliminaries; 1.1. The Pilipović spaces; 1.2. Spaces of Hermite series expansions; 2. Embedding properties for quasi-Banach spaces contained in Pilipović distribution spaces; References; Blow-up Phenomena for Solutions of Discrete Nonlinear p-Laplacian Parabolic Equations on Networks; 1. Introduction; 2. Preliminaries
6. Embedding of periodic ultradistributions7. Regular periodic generalized functions of class {Mp} and {Mp}; References; On General Prime Number Theorems with Remainder; 1. Introduction; 2. Preliminaries and notation; 2.1. Beurling generalized number systems; 2.2. Fourier transforms and distributions; 3. A Tauberian theorem with remainder; 4. The PNT with Nyman's remainder; 5. A Cesàro version of the PNT with remainder; Acknowledgement; References; Inverse Function Theorems for Generalized Smooth Functions; 1. Introduction; 1.1. Basic notions; 2. Local inverse function theorems
3. Global inverse function theorems4. Conclusions; Acknowledgement; References; The Stochastic LQR Optimal Control with Fractional Brownian Motion; 1. Introduction; 2. Theoretical background; 2.1. The SLQR problem: existence of solution; 2.1.1. Inhomogeneous deterministic LQR problem.; 2.1.2. Strong and mild solutions.; 2.2. Fractional Brownian motion; 2.3. White noise analysis and chaos expansions; 2.3.1. Gaussian white noise space.; 2.3.2. Stochastic processes.; 2.3.3. Operators.; 2.3.4. Stochastic integration and Wick multiplication.; 2.3.5. The fractional transform operatorM(H).
6. Embedding of periodic ultradistributions7. Regular periodic generalized functions of class {Mp} and {Mp}; References; On General Prime Number Theorems with Remainder; 1. Introduction; 2. Preliminaries and notation; 2.1. Beurling generalized number systems; 2.2. Fourier transforms and distributions; 3. A Tauberian theorem with remainder; 4. The PNT with Nyman's remainder; 5. A Cesàro version of the PNT with remainder; Acknowledgement; References; Inverse Function Theorems for Generalized Smooth Functions; 1. Introduction; 1.1. Basic notions; 2. Local inverse function theorems
3. Global inverse function theorems4. Conclusions; Acknowledgement; References; The Stochastic LQR Optimal Control with Fractional Brownian Motion; 1. Introduction; 2. Theoretical background; 2.1. The SLQR problem: existence of solution; 2.1.1. Inhomogeneous deterministic LQR problem.; 2.1.2. Strong and mild solutions.; 2.2. Fractional Brownian motion; 2.3. White noise analysis and chaos expansions; 2.3.1. Gaussian white noise space.; 2.3.2. Stochastic processes.; 2.3.3. Operators.; 2.3.4. Stochastic integration and Wick multiplication.; 2.3.5. The fractional transform operatorM(H).