000798401 000__ 04690cam\a2200517Ia\4500 000798401 001__ 798401 000798401 005__ 20230306143523.0 000798401 006__ m\\\\\o\\d\\\\\\\\ 000798401 007__ cr\un\nnnunnun 000798401 008__ 170905s2017\\\\sz\a\\\\ob\\\\101\0\eng\d 000798401 019__ $$a1002418479$$a1003117385 000798401 020__ $$a9783319603049$$q(electronic book) 000798401 020__ $$a3319603043$$q(electronic book) 000798401 020__ $$z9783319603025 000798401 020__ $$z3319603027 000798401 035__ $$aSP(OCoLC)on1002911739 000798401 035__ $$aSP(OCoLC)1002911739$$z(OCoLC)1002418479$$z(OCoLC)1003117385 000798401 040__ $$aYDX$$beng$$cYDX$$dN$T$$dEBLCP$$dN$T$$dGW5XE$$dUAB 000798401 049__ $$aISEA 000798401 050_4 $$aQH323.5 000798401 08204 $$a570/.151$$223 000798401 24500 $$aWomen in mathematical biology :$$bresearch collaboration workshop, Nimbios, Knoxville, June 2015 /$$cAnita T. Layton, Laura A. Miller, editors 000798401 260__ $$aCham :$$bSpringer,$$c©2017. 000798401 300__ $$a1 online resource :$$bill. 000798401 336__ $$atext$$btxt$$2rdacontent 000798401 337__ $$acomputer$$bc$$2rdamedia 000798401 338__ $$aonline resource$$bcr$$2rdacarrier 000798401 4901_ $$aAssociation for Women in Mathematics Series ;$$vvolume 8 000798401 504__ $$aIncludes bibliographical references and index. 000798401 5050_ $$aPreface; Contents; The Modulation of Pain by Circadian and Sleep-Dependent Processes: A Review of the Experimental Evidence; 1 Introduction: A Vicious Cycle; 2 What Is Pain?; 3 The Relationship Between the Sleep Cycle and Pain Sensitivity in Humans; 3.1 There Is a Daily Rhythm in Experimental Pain Sensitivity in Humans; 3.2 Homeostatic Sleep Drive Increases Pain Sensitivity in Humans; 3.3 A Cross-Species Comparison: Circadian Rhythms and Homeostatic Sleep Drive Influence Pain Sensitivity in Laboratory Rodents; 4 Circadian Rhythms and Homeostatic Sleep Drive Modulate Pain Neural Circuitry 000798401 5058_ $$a5 DiscussionReferences; Investigating Circadian Rhythmicity in Pain Sensitivity Usinga Neural Circuit Model for Spinal Cord Processing of Pain; 1 The Neural Processing of Pain; 1.1 Previous Models of Pain Processing; 2 Mathematical Model; 2.1 Equations of Time Evolution; 2.1.1 Model Inputs from the Dorsal Root Ganglion; 2.2 Firing Rate Response Functions; 3 Model Validation; 3.1 Pain Inhibition; 3.2 Wind-Up; 3.3 Neuropathy; 4 Model with Descending Control from the Mid-Brain; 4.1 Introduction; 4.2 Amendments to Model; 4.3 Model Validation; 5 Conclusions and Future Work; References 000798401 5058_ $$aA Two-Process Model for Circadian and Sleep-Dependent Modulation of Pain Sensitivity1 Introduction; 2 Background: Two-Process Model for Circadian Modulation of Sleep Timing; 3 Two-Process Model for Pain Sensitivity; 4 Model Predictions; 4.1 Pain Sensitivity Under Sleep Deprivation; 4.2 Pain Sensitivity Under Sleep Restriction; 4.3 Pain Sensitivity Under Shift Work Schedules; 5 Discussion; References; Introduction to Mathematical Modeling of Blood Flow Controlin the Kidney; 1 Introduction; 2 Myogenic Response; 3 Tubuloglomerular Feedback; 4 Applications; References 000798401 5058_ $$aModeling Autoregulation of the Afferent Arteriole of the Rat Kidney1 Introduction; 2 Mathematical Model; 2.1 Single Cell Model; 2.2 Multi-Cell Model; 2.3 Numerical Method; 3 Model Results; 4 Discussion; Appendix; Transmembrane Ionic Transport; Ion and Charge Conservation Equations; Background Currents; Potassium Transport Pathways; Sodium Transport Pathways; Chloride Transport Pathways; Calcium Transport Pathways; Intracellular Ca2+ Dynamics; Calcium Buffers; Kinetics of Myosin Light Chain Phosphorylation; CaM Activation of MLCK; Rho-Kinase Inhibition of MLCP 000798401 5058_ $$aMLCK- and MLCP-Dependent Phosphorylation of MyosinMechanical Behavior of Cell; References; Modeling Blood Flow and Oxygenation in a Diabetic Rat Kidney; 1 Introduction; 2 Mathematical Model; 2.1 Renal Autoregulation; 2.2 Solute Conservation; 2.3 Oxygen Consumption; 2.4 Modeling a Diabetic Kidney; 3 Model Results; 3.1 Renal Autoregulation in Diabetes; 3.2 Renal Oxygenation in Diabetes; 4 Discussion; References; Tracking the Distribution of a Solute Bolus in the Rat Kidney; 1 Introduction; 2 Mathematical Model; 3 Model Results; 3.1 Steady-State Results 000798401 506__ $$aAccess limited to authorized users. 000798401 650_0 $$aBiology$$xMathematical models. 000798401 650_0 $$aWomen biologists. 000798401 650_0 $$aWomen mathematicians. 000798401 7001_ $$aLayton, Anita T.,$$d1973-$$eeditor. 000798401 7001_ $$aMiller, Laura A.,$$eeditor. 000798401 77608 $$iPrint version:$$z9783319603025$$z3319603027$$w(OCoLC)987282857 000798401 830_0 $$aAssociation for Women in Mathematics Series ;$$vv. 8. 000798401 852__ $$bebk 000798401 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-60304-9$$zOnline Access$$91397441.1 000798401 909CO $$ooai:library.usi.edu:798401$$pGLOBAL_SET 000798401 980__ $$aEBOOK 000798401 980__ $$aBIB 000798401 982__ $$aEbook 000798401 983__ $$aOnline 000798401 994__ $$a92$$bISE