000799705 000__ 04916cam\a2200541Ki\4500 000799705 001__ 799705 000799705 005__ 20230306143451.0 000799705 006__ m\\\\\o\\d\\\\\\\\ 000799705 007__ cr\un\nnnunnun 000799705 008__ 170906s2017\\\\sz\\\\\\ob\\\\000\0\eng\d 000799705 019__ $$a1003197177$$a1003253845 000799705 020__ $$a9783319659756$$q(electronic book) 000799705 020__ $$a3319659758$$q(electronic book) 000799705 020__ $$z9783319659749 000799705 020__ $$z331965974X 000799705 035__ $$aSP(OCoLC)on1003107250 000799705 035__ $$aSP(OCoLC)1003107250$$z(OCoLC)1003197177$$z(OCoLC)1003253845 000799705 040__ $$aYDX$$beng$$erda$$cYDX$$dN$T$$dEBLCP$$dGW5XE$$dN$T$$dOCLCF$$dNJR 000799705 049__ $$aISEA 000799705 050_4 $$aQH212.S35 000799705 066__ $$c(S 000799705 08204 $$a502.8/2$$223 000799705 1001_ $$aEdkins, Stephen,$$eauthor. 000799705 24510 $$aVisualising the charge and Cooper-pair density waves in cuprates /$$cStephen Edkins. 000799705 264_1 $$aCham, Switzerland :$$bSpringer,$$c[2017]. 000799705 264_4 $$c©2017 000799705 300__ $$a1 online resource. 000799705 336__ $$atext$$btxt$$2rdacontent 000799705 337__ $$acomputer$$bc$$2rdamedia 000799705 338__ $$aonline resource$$bcr$$2rdacarrier 000799705 4901_ $$aSpringer theses : recognizing outstanding Ph.D. research 000799705 500__ $$a"Doctoral thesis accepted by the University of St Andrews, St Andrews, Scotland, UK." 000799705 504__ $$aIncludes bibliographical references. 000799705 5050_ $$aSupervisor's Foreword; Abstract; Acknowledgements; Contents; 1 Introduction to Unconventional Superconductivity and Density Waves in Cuprates; 1.1 Superconductivity; 1.1.1 What Is a Superconductor?; 1.1.2 BCS Theory of Superconductivity; 1.2 High-Temperature Unconventional Superconductivity in Cuprates; 1.2.1 Effective Models of the CuO2 Plane; 1.2.2 Phase Diagram; 1.2.3 Anti-Ferromagnetism; 1.2.4 High-Temperature d-Wave Superconductivity; 1.2.5 Strange Metal; 1.2.6 The Pseudogap; 1.3 Charge Density Waves; 1.4 Unconventional Density Waves in Cuprates; 1.5 The Significance of CDW in Cuprates 000799705 5058_ $$a1.6 Organisation of This ThesisReferences; 2 Spectroscopic-Imaging STM (SI-STM); 2.1 Quantum Tunnelling as a Spectroscopy; 2.1.1 Tunnelling Hamiltonian Formalism; 2.1.2 Normal-Insulator-Normal (NIN) Tunnelling; 2.1.3 Superconductor-Insulator-Normal (SIN) Tunnelling; 2.1.4 Superconductor-Insulator-Superconductor (SIS) Tunnelling; 2.2 STM -- Principles; 2.3 STM -- Modes of Operation; 2.3.1 Topography; 2.3.2 Spectroscopy; 2.4 SI-STM; 2.4.1 The Setup Effect; 2.4.2 Spectroscopic Functions g(""0245r,E), I(""0245r,E), Z(""0245r,E), and R(""0245r,E); 2.5 Experimental Apparatus; 2.5.1 STM Head 000799705 5058_ $$a4 Atomic-Scale Electronic Structure of the Cuprate d-Symmetry Form Factor Charge Density Wave4.1 Form Factor Decomposition of Modulations in the CuO2 Plane; 4.2 Proposals for a d-Symmetry Form Factor CDW in Cuprates; 4.3 SI-STM Signatures of a d-Symmetry Form Factor CDW; 4.4 Detection of a d-Symmetry Form Factor CDW in Cuprates; 4.4.1 Form Factor Measurement Using Sub-Lattice Segregated SI-STM; 4.4.2 Temperature Dependence of the CDW Phenomena; 4.4.3 Short-Range Unidirectional CDW Domains; 4.5 Characteristics of CDW Modulations in the Spectral Function 000799705 5058_ $$a4.6 Phase Relationship Between the Modulation of Filled and Empty States4.7 Doping-Dependence of the CDW Wave-Vector; 4.8 Conclusions and Proposed Future Experiments; References; 5 The Scanned Josephson Tunnelling Microscope; 5.1 Fundamentals of SJTM Operation; 5.2 The Josephson Effect as a Measure of the Superconducting Order Parameter; 5.3 Josephson Current-Voltage Characteristics in Ultra-small Junctions; 5.3.1 I(VJJ) Characteristics for Josephson Junctions with Strong Phase Coupling; 5.3.2 Thermal Phase Fluctuations in Ultra-small Josephson Junctions 000799705 506__ $$aAccess limited to authorized users. 000799705 520__ $$aThis thesis reports on the use of scanning tunnelling microscopy to elucidate the atomic-scale electronic structure of a charge density wave, revealing that it has a d-symmetry form factor, hitherto unobserved in nature. It then details the development of an entirely new class of scanned probe: the scanning Josephson tunnelling microscope. This scans the Josephson junction formed between a cuprate superconducting microscope tip and the surface of a cuprate sample, thereby imaging the superfluid density of the sample with nanometer resolution. This novel method is used to establish the existence of a spatially modulated superconducting condensate, something postulated theoretically over half a century ago but never previously observed. 000799705 588__ $$aDescription based on print version record. 000799705 650_0 $$aScanning tunneling microscopy. 000799705 650_0 $$aHigh temperature superconductors. 000799705 77608 $$iPrint version:$$z9783319659749$$z331965974X$$w(OCoLC)994639817 000799705 830_0 $$aSpringer theses. 000799705 852__ $$bebk 000799705 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-65975-6$$zOnline Access$$91397441.1 000799705 909CO $$ooai:library.usi.edu:799705$$pGLOBAL_SET 000799705 980__ $$aEBOOK 000799705 980__ $$aBIB 000799705 982__ $$aEbook 000799705 983__ $$aOnline 000799705 994__ $$a92$$bISE