000799802 000__ 05045cam\a2200577Ii\4500 000799802 001__ 799802 000799802 005__ 20230306143645.0 000799802 006__ m\\\\\o\\d\\\\\\\\ 000799802 007__ cr\un\nnnunnun 000799802 008__ 170912s2017\\\\sz\a\\\\ob\\\\101\0\eng\d 000799802 019__ $$a1003513803 000799802 020__ $$a9783319593876$$q(electronic book) 000799802 020__ $$a3319593870$$q(electronic book) 000799802 020__ $$z9783319593869 000799802 020__ $$z3319593862 000799802 035__ $$aSP(OCoLC)on1003317638 000799802 035__ $$aSP(OCoLC)1003317638$$z(OCoLC)1003513803 000799802 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dEBLCP$$dGW5XE$$dN$T$$dOCLCF$$dYDX 000799802 049__ $$aISEA 000799802 050_4 $$aQA431 000799802 08204 $$a518/.5$$223 000799802 1112_ $$aInternational Conference on Integral Methods in Science and Engineering$$n(14th :$$d2016 :$$cPadova, Italy) 000799802 24510 $$aIntegral methods in science and engineering.$$nVolume 2,$$pPractical applications /$$cChristian Constanda, Matteo Dalla Riva, Pier Domenico Lamberti, Paolo Musolino, editors. 000799802 24630 $$aPractical applications 000799802 264_1 $$aCham, Switzerland :$$bBirkhäuser,$$c[2017]. 000799802 264_4 $$c©2017 000799802 300__ $$a1 online resource (xxiv, 312 pages) :$$billustrations. 000799802 336__ $$atext$$btxt$$2rdacontent 000799802 337__ $$acomputer$$bc$$2rdamedia 000799802 338__ $$aonline resource$$bcr$$2rdacarrier 000799802 504__ $$aIncludes bibliographical references and index. 000799802 5050_ $$aPreface; Digital Art by Walid Ben Medjedel; Contents; List of Contributors; 1 On a Continuous Energy Monte Carlo Simulator for Neutron Transport: Optimisation with Fission, Intermediate and Thermal Distributions; 1.1 Introduction; 1.2 Neutron Transport by a Monte Carlo Method; 1.3 Program Description; 1.4 Nuclear Reactions; 1.5 Coupled Distributions; 1.6 Results; 1.7 Conclusions and Future Work; References; 2 The Use of Similarity Indices in the Analysis of Temporal Distribution of Mammals; 2.1 Introduction; 2.2 The Case Study; 2.3 The Statistical Model; 2.4 Results 000799802 5058_ $$a2.5 Discussion and ConclusionReferences; 3 The Method of Superposition for Near-Field Acoustic Holography in a Semi-anechoic Chamber; 3.1 Introduction; 3.2 Method of Superposition; 3.3 Near-Field Acoustic Holography in a Half-Space; 3.4 Regularisation and Sparse Reconstruction; 3.5 Numerical Results; 3.6 Conclusions; References; 4 Application of Stochastic Dynamic Programming in Demand Dispatch-Based Optimal Operation of a Microgrid; 4.1 Introduction; 4.2 Problem Description; 4.3 Stochastic Dynamic Programming; 4.4 Inventory Control Model 000799802 5058_ $$a4.5 Problem Formulation by SDP (Inventory Control Model)4.6 Lemma; 4.7 Solution Approach: Step by Step; 4.8 Summary and Conclusion; References; 5 Spectral Boundary Element Algorithms for Multi-Length Interfacial Dynamics; 5.1 Introduction; 5.2 Mathematical Formulation; 5.3 Interfacial Spectral Boundary Element Algorithms; 5.4 Multi-Length Interfacial Dynamics Problems; References; 6 Kinect Depth Recovery Based on Local Filtersand Plane Primitives; 6.1 Introduction; 6.2 Proposed Method; 6.3 Experimental Results; 6.4 Conclusion; References 000799802 5058_ $$a7 On the Neutron Point Kinetic Equation with Reactivity Decomposition Based on Two Time Scales7.1 Introduction; 7.2 Neutron Poisons; 7.3 Point Kinetics with Poisons; 7.4 Solution by Decomposition; 7.5 Numerical Results; 7.6 Algorithm Stability; 7.7 Conclusions; References; 8 Iterated Kantorovich vs Kulkarni Method for Fredholm Integral Equations; 8.1 Introduction; 8.2 Details of Implementation in the Case of WeaklySingular Kernels; 8.3 Numerical Results; 8.4 Conclusion; References; 9 Infiltration Simulation in Porous Media: A Universal Functional Solution for Unsaturated Media 000799802 5058_ $$a9.1 Introduction9.2 Modelling Infiltration by the Richards Equation; 9.3 The Parametrised Solution; 9.4 Comparison to Benchmark Simulations (HYDRUS) and Self-Consistency Test; 9.5 Conclusions; References; 10 Mathematical Models of Cell Clustering Due to Chemotaxis; 10.1 Introduction; 10.2 Simple Model; 10.3 Boundary Integral Model; 10.4 Numerical Results; 10.5 Conclusions; References; 11 An Acceleration Approach for Fracture Problems in the Extended Boundary Element Method (XBEM) Framework; 11.1 Introduction; 11.2 Extended Boundary Element Method; 11.3 Adaptive Cross Approximation 000799802 506__ $$aAccess limited to authorized users. 000799802 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed September 20, 2017). 000799802 650_0 $$aIntegral equations$$xNumerical solutions$$vCongresses. 000799802 650_0 $$aMathematical analysis$$vCongresses. 000799802 650_0 $$aScience$$xMathematics$$vCongresses. 000799802 650_0 $$aEngineering mathematics$$vCongresses. 000799802 7001_ $$aConstanda, C.$$q(Christian),$$eeditor. 000799802 7001_ $$aRiva, Matteo Dalla,$$eeditor. 000799802 7001_ $$aLamberti, Pier Domenico,$$eeditor. 000799802 7001_ $$aMusolino, Paolo,$$eeditor. 000799802 77608 $$iPrint version:$$z9783319593869$$z3319593862$$w(OCoLC)985082414 000799802 852__ $$bebk 000799802 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-59387-6$$zOnline Access$$91397441.1 000799802 909CO $$ooai:library.usi.edu:799802$$pGLOBAL_SET 000799802 980__ $$aEBOOK 000799802 980__ $$aBIB 000799802 982__ $$aEbook 000799802 983__ $$aOnline 000799802 994__ $$a92$$bISE