Linked e-resources
Details
Table of Contents
Preface and Editorial; Acknowledgments; About This Book; Contents; Contributors; About the Authors; Chapter 1: How the Severity Factor in Biomass Hydrolysis Came About; Chapter 2: Effect of Hydrothermal Pretreatment on Lignin and Antioxidant Activity; 2.1 Introduction; 2.2 Effect of Treatment Conditions in Lignin Solubilization; 2.3 Phenolic Composition of Autohydrolysis Liquors from LCM; 2.4 Antioxidant Activity; 2.4.1 Relevance and Type of Antioxidants; 2.4.2 Mechanism of Action; 2.4.3 Methodologies to Evaluate the Antioxidant Capacity; 2.4.3.1 Chemical-Based Assays.
2.4.3.2 Measurement of Antioxidant Activity in Biological Model Systems2.4.4 Natural Antioxidants; 2.5 Examples of Crude Antioxidant Extracts from Autohydrolysis of LCM; 2.6 Conclusions and Future Perspectives; References; Chapter 3: Effect of Hydrothermal Processing on Hemicellulose Structure; 3.1 Introduction; 3.2 Hemicellulose Structure; 3.2.1 Hardwood Hemicelluloses; 3.2.1.1 Glucuronoxylan; 3.2.1.2 Glucomannan; 3.2.1.3 Xyloglucan; 3.2.2 Softwood Hemicelluloses; 3.2.2.1 Galactoglucomannans; 3.2.2.2 Arabinoglucuronoxylan; 3.2.2.3 Arabinogalactan; 3.2.3 Gramineae Hemicelluloses.
3.2.3.1 Arabinoxylan3.2.3.2 beta-(13, 14)-Glucans; 3.2.3.3 Homoxylan; 3.3 Fundamentals of the Hydrothermal Processing of Lignocellulose; 3.3.1 Characteristics of Hydrothermal Processing; 3.3.1.1 Autohydrolysis/Hot Water Pretreatment; 3.3.1.2 Steam Explosion; 3.3.2 Reactions and Mechanisms; 3.3.3 Severity Factor; 3.3.4 Kinetic Models of Hemicellulose Hydrolysis; 3.3.4.1 Pseudohomogeneous Kinetic Models; 3.3.4.2 Kinetic Models with Fast- and Slow-Reacting Xylan; 3.3.4.3 Kinetic Models Including Oligomer Concentrations; 3.3.4.4 Kinetic Models Including Intermediates.
3.4 Analysis and Structural Characterization of Hemicelluloses Before and After Hydrothermal Processing3.4.1 Chromatographic Analysis; 3.4.1.1 HPAEC; 3.4.1.2 HPLC; 3.4.1.3 GPC; 3.4.1.4 MALDI-TOF MS; 3.4.2 Spectroscopic Analysis; 3.4.2.1 FT-IR; 3.4.2.2 NMR; 3.4.2.3 Glycome Profiling; 3.4.2.4 Immunogold Localization; 3.4.2.5 SEM; 3.5 Concluding Remarks; References; Chapter 4: Response of Biomass Species to Hydrothermal Pretreatment; 4.1 Introduction; 4.1.1 History, Current State of the Art, and Future Development; 4.1.2 Feedstock Crop, Production, and Utilization; 4.1.2.1 Wood; 4.1.2.2 Bamboo.
4.1.2.3 Agricultural Residues4.1.2.4 Agave and Agave Bagasse; 4.2 Structure and Chemical Composition Analysis of Raw Biomass; 4.2.1 Ultrastructure of Lignocellulosic Biomass; 4.2.2 Compositional Analysis of Biomass; 4.2.2.1 Wood; 4.2.2.2 Bamboo and Agricultural Residues; 4.2.2.3 Agave and AGB; 4.3 Response of Biomass to Hydrothermal Treatment; 4.3.1 Reactions in Acidic Condition; 4.3.1.1 Hydrolysis Mechanism in Acidic Condition; 4.3.1.2 Hemicellulose; 4.3.1.3 Cellulose; 4.3.1.4 Lignin; 4.3.1.5 Ash; 4.3.1.6 Extractives; 4.3.1.7 Ultrastructure.
2.4.3.2 Measurement of Antioxidant Activity in Biological Model Systems2.4.4 Natural Antioxidants; 2.5 Examples of Crude Antioxidant Extracts from Autohydrolysis of LCM; 2.6 Conclusions and Future Perspectives; References; Chapter 3: Effect of Hydrothermal Processing on Hemicellulose Structure; 3.1 Introduction; 3.2 Hemicellulose Structure; 3.2.1 Hardwood Hemicelluloses; 3.2.1.1 Glucuronoxylan; 3.2.1.2 Glucomannan; 3.2.1.3 Xyloglucan; 3.2.2 Softwood Hemicelluloses; 3.2.2.1 Galactoglucomannans; 3.2.2.2 Arabinoglucuronoxylan; 3.2.2.3 Arabinogalactan; 3.2.3 Gramineae Hemicelluloses.
3.2.3.1 Arabinoxylan3.2.3.2 beta-(13, 14)-Glucans; 3.2.3.3 Homoxylan; 3.3 Fundamentals of the Hydrothermal Processing of Lignocellulose; 3.3.1 Characteristics of Hydrothermal Processing; 3.3.1.1 Autohydrolysis/Hot Water Pretreatment; 3.3.1.2 Steam Explosion; 3.3.2 Reactions and Mechanisms; 3.3.3 Severity Factor; 3.3.4 Kinetic Models of Hemicellulose Hydrolysis; 3.3.4.1 Pseudohomogeneous Kinetic Models; 3.3.4.2 Kinetic Models with Fast- and Slow-Reacting Xylan; 3.3.4.3 Kinetic Models Including Oligomer Concentrations; 3.3.4.4 Kinetic Models Including Intermediates.
3.4 Analysis and Structural Characterization of Hemicelluloses Before and After Hydrothermal Processing3.4.1 Chromatographic Analysis; 3.4.1.1 HPAEC; 3.4.1.2 HPLC; 3.4.1.3 GPC; 3.4.1.4 MALDI-TOF MS; 3.4.2 Spectroscopic Analysis; 3.4.2.1 FT-IR; 3.4.2.2 NMR; 3.4.2.3 Glycome Profiling; 3.4.2.4 Immunogold Localization; 3.4.2.5 SEM; 3.5 Concluding Remarks; References; Chapter 4: Response of Biomass Species to Hydrothermal Pretreatment; 4.1 Introduction; 4.1.1 History, Current State of the Art, and Future Development; 4.1.2 Feedstock Crop, Production, and Utilization; 4.1.2.1 Wood; 4.1.2.2 Bamboo.
4.1.2.3 Agricultural Residues4.1.2.4 Agave and Agave Bagasse; 4.2 Structure and Chemical Composition Analysis of Raw Biomass; 4.2.1 Ultrastructure of Lignocellulosic Biomass; 4.2.2 Compositional Analysis of Biomass; 4.2.2.1 Wood; 4.2.2.2 Bamboo and Agricultural Residues; 4.2.2.3 Agave and AGB; 4.3 Response of Biomass to Hydrothermal Treatment; 4.3.1 Reactions in Acidic Condition; 4.3.1.1 Hydrolysis Mechanism in Acidic Condition; 4.3.1.2 Hemicellulose; 4.3.1.3 Cellulose; 4.3.1.4 Lignin; 4.3.1.5 Ash; 4.3.1.6 Extractives; 4.3.1.7 Ultrastructure.