000809324 000__ 04704cam\a2200481Ii\4500 000809324 001__ 809324 000809324 005__ 20230306143923.0 000809324 006__ m\\\\\o\\d\\\\\\\\ 000809324 007__ cr\cn\nnnunnun 000809324 008__ 180227s2018\\\\sz\\\\\\o\\\\\100\0\eng\d 000809324 020__ $$a9783319697123$$q(electronic book) 000809324 020__ $$a3319697129$$q(electronic book) 000809324 020__ $$z9783319697116 000809324 035__ $$aSP(OCoLC)on1025328172 000809324 035__ $$aSP(OCoLC)1025328172 000809324 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dGW5XE$$dN$T$$dEBLCP$$dUAB 000809324 049__ $$aISEA 000809324 050_4 $$aQA246 000809324 08204 $$a512.7/3$$223 000809324 1112_ $$aConference on "L-Functions and Automorphic Forms"$$d(2016 :$$cHeidelberg, Germany) 000809324 24510 $$aL-functions and automorphic forms :$$bLAF, Heidelberg, February 22-26, 2016 /$$cJan Hendrik Bruinier, Winfried Kohnen, editors. 000809324 264_1 $$aCham, Switzerland :$$bSpringer,$$c2018. 000809324 300__ $$a1 online resource. 000809324 336__ $$atext$$btxt$$2rdacontent 000809324 337__ $$acomputer$$bc$$2rdamedia 000809324 338__ $$aonline resource$$bcr$$2rdacarrier 000809324 4901_ $$aContributions in mathematical and computational sciences,$$x2191-303X ;$$vvolume 10 000809324 5050_ $$aIntro; Preface; Contents; Sturm-Like Bound for Square-Free Fourier Coefficients; 1 Introduction; 2 Proof of the Main Result; 2.1 Remarks; 2.2 Further Questions; References; Images of Maass-Poincaré Series in the Lower Half-Plane; 1 Introduction and Statement of Results; 2 Preliminaries; 2.1 Harmonic Maass Forms; 2.2 Poincaré Series; 3 Proof of Theorem 1.1; 3.1 The Holomorphic Part; 3.2 The Non-holomorphic Part; References; On Denominators of Values of Certain L-Functions When Twisted by Characters; 1 Introduction; 2 Preliminaries; 2.1 General Notation; 2.2 Siegel Modular Forms 000809324 5058_ $$a2.3 Eisenstein Series2.4 Petersson Product; 2.5 Hecke Operators and L-Functions; 3 The Main Construction; 3.1 The Construction of gnk,ν(Ï#x87;); First Step: Exterior Twist; Second Step: Differential Operators; Third Step: Spectral Decomposition; 3.2 Forth Step: Level Change; Fifth Step: Normalization; 4 Congruence Primes and Denominators; 5 Congruences for Modular Forms; 6 Denominators Again; 7 Outlook; References; First Order p-Adic Deformations of Weight One Newforms; Introduction; Part A: The Regular Setting; 1 The General Case; 2 CM Forms; 2.1 The Case Where p Splits in K 000809324 5058_ $$a2.2 The Case Where p Is Inert in K2.3 Numerical Examples; 3 RM Forms; Part B: The Irregular Setting; 4 Generalised Eigenspaces; 5 The General Case; 6 CM Forms; 7 RM Forms; References; Computing Invariants of the Weil Representation; 1 Introduction; 2 Finite Quadratic Modules and Weil Representations; 3 Invariants; 4 The Algorithm; 5 Reduction Mod; 6 Tables; References; The Metaplectic Tensor Product as an Instance of Langlands Functoriality; 1 Kazhdan-Patterson Coverings and Metaplectic Tensor Product; 1.1 Kazhdan-Patterson Covering; 1.2 Covers of Levi Subgroups 000809324 5058_ $$a1.3 Metaplectic Tensor Product2 L-Group Formalism; 2.1 Dual Group; 2.2 Structural Facts; 2.3 L-Group and LLC; 2.4 Desiderata; 2.5 LLC for Covering Tori; 2.6 LLC for Principal Series; 2.7 Distinguished Splittings; 3 L-Group Interpretation of Metaplectic Tensor Product; 3.1 Setup; 3.2 The Conjecture; 3.3 Case of Principal Series; References; On Scattering Constants of Congruence Subgroups; 1 Introduction; 1.1 Scattering Constants; 1.2 Purpose of this Article; 1.3 Outline of the Article; 2 Background Material; 2.1 Congruence Subgroups; 2.2 Cusps; 2.3 Non-holomorphic Eisenstein Series 000809324 5058_ $$a2.4 Scattering Functions and Scattering Constants3 The Principal Congruence Subgroup; 3.1 Cusps; 3.2 Scattering Functions; 4 Relation for Non-holomorphic Eisenstein Series; 5 Formulas for Scattering Constants; 6 Examples; References; The Bruinierâ#x80;#x93;Funke Pairing and the Orthogonal Complement of Unary Theta Functions; 1 Introduction; 2 Preliminaries; 2.1 Basic Definitions; 2.2 Half-Integral Weight Forms; 2.3 Theta Functions for Quadratic Polynomials; 3 The Bruinierâ#x80;#x93;Funke Pairing; 4 An Application to Lattice Theory; 4.1 An Application; 4.2 An Individual Case; References 000809324 506__ $$aAccess limited to authorized users. 000809324 588__ $$aOnline resource; title from PDF title page (viewed February 28, 2018). 000809324 650_0 $$aL-functions$$vCongresses. 000809324 650_0 $$aAutomorphic forms$$vCongresses. 000809324 7001_ $$aBruinier, Jan H.$$q(Jan Hendrik),$$d1971-$$eeditor. 000809324 7001_ $$aKohnen, Winfried,$$eeditor. 000809324 830_0 $$aContributions in mathematical and computational sciences ;$$vv. 10. 000809324 852__ $$bebk 000809324 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-69712-3$$zOnline Access$$91397441.1 000809324 909CO $$ooai:library.usi.edu:809324$$pGLOBAL_SET 000809324 980__ $$aEBOOK 000809324 980__ $$aBIB 000809324 982__ $$aEbook 000809324 983__ $$aOnline 000809324 994__ $$a92$$bISE