000824347 000__ 05665cam\a2200589Mi\4500 000824347 001__ 824347 000824347 005__ 20230306144116.0 000824347 006__ m\\\\\o\\d\\\\\\\\ 000824347 007__ cr\nn\nnnunnun 000824347 008__ 170907s2018\\\\si\a\\\\o\\\\\000\0\eng\d 000824347 019__ $$a1003284615$$a1003514894$$a1003797166 000824347 020__ $$a9789811055171 000824347 020__ $$a9811055173 000824347 020__ $$z9789811055164 000824347 020__ $$z9811055165 000824347 0247_ $$a10.1007/978-981-10-5517-1$$2doi 000824347 035__ $$aSP(OCoLC)on1008877234 000824347 035__ $$aSP(OCoLC)1008877234$$z(OCoLC)1003284615$$z(OCoLC)1003514894$$z(OCoLC)1003797166 000824347 040__ $$aAZU$$beng$$epn$$cAZU$$dOCLCO$$dNJR$$dOCLCQ$$dVT2$$dYDX$$dN$T$$dEBLCP$$dGW5XE$$dOCLCF$$dCOO$$dUAB$$dGZM$$dU3W$$dCAUOI$$dOCL 000824347 049__ $$aISEA 000824347 050_4 $$aTK1001-1841 000824347 08204 $$a621.042$$223 000824347 1001_ $$aZheng, Siming,$$eauthor. 000824347 24510 $$aStudy on Hydrodynamic Characteristics of the Raft-type Wave-Powered Desalination Device /$$cby Siming Zheng. 000824347 264_1 $$aSingapore :$$bSpringer Singapore :$$bImprint :$$bSpringer,$$c2018. 000824347 300__ $$a1 online resource (xvii, 183 pages) :$$billustrations. 000824347 336__ $$atext$$btxt$$2rdacontent 000824347 337__ $$acomputer$$bc$$2rdamedia 000824347 338__ $$aonline resource$$bcr$$2rdacarrier 000824347 347__ $$atext file$$bPDF$$2rda 000824347 4901_ $$aSpringer Theses, Recognizing Outstanding Ph. D. Research,$$x2190-5053 000824347 504__ $$aIncludes bibliographical references. 000824347 5050_ $$aSupervisor's Foreword; Abstract; Parts of this thesis have been published in the following articles:Zheng SM, Zhang YL (2017) Analytical study on hydrodynamic performance of a raft-type wave power device. Journal of Marine Science and Technology. (doi:10.1007/s00773-017-0436-z)Zheng SM, Zhang YL (2016) Wave diffraction and radiation by multiple rectangular floaters. Journal of Hydraulic Research, 54(1):102-115.Zheng SM, Zhang YH, Zhang YL et al. (2015) Numerical study on the dynamics of a two-raft wave energy conversion device.; Acknowledgements; Contents; Abbreviations; 1 Introduction 000824347 5058_ $$a1.1 Background and Significance of the Research1.2 Review of Wave-Powered Desalination Technology; 1.3 Review of Raft-Type Wave Energy Converters; 1.4 Research Contents and Outline of the Thesis; References; 2 Analytical Study on Hydrodynamic Characteristics; 2.1 Brief Introduction; 2.2 Analytical Model; 2.2.1 Diffraction and Radiation Problem; 2.2.2 Response of Raft-Type Device; 2.2.3 Power Absorption Efficiency, Reflection and Transmission Coefficients; 2.3 Model Validation; 2.4 Effects of Multiple Parameters; 2.4.1 Linear PTO Damping; 2.4.2 Spacing Distance; 2.4.3 Draft; 2.4.4 Raft Numbers 000824347 5058_ $$a2.4.5 Raft Length2.4.6 Raft Length Ratio; 2.5 Summary; References; 3 Numerical Study on Hydrodynamic Characteristics; 3.1 Brief Introduction; 3.2 Formulation of the Problem; 3.2.1 Frequency Domain Analysis; 3.2.2 Time Domain Analysis; 3.3 Convergence Analysis and Model Validation; 3.4 Results of Frequency Domain Analysis; 3.4.1 Effect of Raft Length and Linear Damping; 3.4.2 Effect of Radius of Gyration; 3.4.3 Effect of Axis Ratio; 3.4.4 Effect of PTO Stiffness; 3.5 Results of Time Domain Analysis; 3.5.1 Effect of Coulomb Damping; 3.5.2 Effect of Radius of Gyration 000824347 5058_ $$a3.5.3 Effect of Latching Control3.6 Summary; References; 4 Maximum Power Absorption by Two Interconnected Rafts; 4.1 Brief Introduction; 4.2 Mathematical Model; 4.2.1 Maximum Power Absorption with No Constraints; 4.2.2 Maximum Power Absorption with Constraints; 4.3 Results and Discussion; 4.3.1 Model Validation; 4.3.2 Maximum Power Absorption with Optimized cPTO; 4.3.3 Maximum Power Absorption with Optimized cPTO and zPTO; 4.3.4 Wave Power Absorption Under Different Principles; 4.4 Summary; References; 5 Maximum Power Absorption by Multiple Connected Rafts; 5.1 Brief Introduction 000824347 5058_ $$a5.2 Mathematical Model5.2.1 System Without Connection Constraints or Motion Constraints; 5.2.2 System with Motion Constraints; 5.2.3 System with Connection Constraints; 5.2.4 System with Connection Constraints and Motion Constraints; 5.3 Numerical Method; 5.4 Results and Discussion; 5.4.1 Model Validation; 5.4.2 Effect of Connection Condition; 5.4.3 Effect of Raft Width]; 5.4.4 Effect of Motion Constraints; 5.5 Summary; References; 6 Hydrodynamics of a Raft-Type Device with Oscillator System; 6.1 Brief Introduction; 6.2 Mathematical Model; 6.2.1 Frequency Domain Analysis 000824347 506__ $$aAccess limited to authorized users. 000824347 520__ $$aThis thesis proposes a new raft-type wave-powered desalination device that can convert wave power into hydraulic energy and use reverse osmosis (RO) to directly desalinate seawater. Both analytical and numerical methods are used to study the hydrodynamic characteristics of the device. Further, the thesis investigates the maximum power extraction and multiple parameter effects on power absorption and averaged permeate water flux. Lastly, it proposes and assesses two power extraction enhancing strategies. The thesis offers a valuable and important reference guide to ocean-wave-and-structure interaction and wave-powered seawater desalination for scientists and engineers alike. 000824347 650_0 $$aEnergy. 000824347 650_0 $$aRenewable energy resources. 000824347 650_0 $$aEnergy harvesting. 000824347 650_0 $$aCoasts. 000824347 650_0 $$aFluid mechanics. 000824347 650_0 $$aRenewable energy sources. 000824347 650_0 $$aClean energy industries. 000824347 77608 $$iPrint version: $$z9789811055164 000824347 830_0 $$aSpringer Theses, Recognizing Outstanding Ph. D. Research. 000824347 852__ $$bebk 000824347 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-981-10-5517-1$$zOnline Access$$91397441.1 000824347 909CO $$ooai:library.usi.edu:824347$$pGLOBAL_SET 000824347 980__ $$aEBOOK 000824347 980__ $$aBIB 000824347 982__ $$aEbook 000824347 983__ $$aOnline 000824347 994__ $$a92$$bISE