000824877 000__ 03476cam\a2200481Mu\4500 000824877 001__ 824877 000824877 005__ 20230306144244.0 000824877 006__ m\\\\\o\\d\\\\\\\\ 000824877 007__ cr\un\nnnunnun 000824877 008__ 171202s2018\\\\gw\\\\\\o\\\\\000\0\eng\d 000824877 019__ $$a1013825895$$a1017785044$$a1021258685$$a1032280955 000824877 020__ $$a9783662556634$$q(electronic book) 000824877 020__ $$a3662556634$$q(electronic book) 000824877 020__ $$z9783662556610 000824877 0247_ $$a10.1007/978-3-662-55663-4$$2doi 000824877 035__ $$aSP(OCoLC)on1013821729 000824877 035__ $$aSP(OCoLC)1013821729$$z(OCoLC)1013825895$$z(OCoLC)1017785044$$z(OCoLC)1021258685$$z(OCoLC)1032280955 000824877 040__ $$aEBLCP$$beng$$cEBLCP$$dOCLCO$$dGW5XE$$dN$T$$dAZU$$dOCLCF$$dUAB$$dMERER$$dOCLCQ$$dU3W$$dYDX 000824877 049__ $$aISEA 000824877 050_4 $$aTA347.E96 000824877 08204 $$a006.3/823$$223 000824877 08204 $$a620 000824877 24500 $$aEvolutionary algorithms, swarm dynamics and complex networks :$$bmethodology, perspectives and implementation /$$cIvan Zelinka, Guanrong Chen, editors. 000824877 260__ $$aBerlin, Germany :$$bSpringer,$$cc2018. 000824877 300__ $$a1 online resource (322 pages) 000824877 336__ $$atext$$btxt$$2rdacontent 000824877 337__ $$acomputer$$bc$$2rdamedia 000824877 338__ $$aonline resource$$bcr$$2rdacarrier 000824877 347__ $$atext file$$bPDF$$2rda 000824877 4901_ $$aEmergence, Complexity and Computation ;$$vv.26 000824877 506__ $$aAccess limited to authorized users. 000824877 520__ $$aEvolutionary algorithms constitute a class of well-known algorithms, which are designed based on the Darwinian theory of evolution and Mendelian theory of heritage. They are partly based on random and partly based on deterministic principles. Due to this nature, it is challenging to predict and control its performance in solving complex nonlinear problems. Recently, the study of evolutionary dynamics is focused not only on the traditional investigations but also on the understanding and analyzing new principles, with the intention of controlling and utilizing their properties and performances toward more effective real-world applications. In this book, based on many years of intensive research of the authors, is proposing novel ideas about advancing evolutionary dynamics towards new phenomena including many new topics, even the dynamics of equivalent social networks. In fact, it includes more advanced complex networks and incorporates them with the CMLs (coupled map lattices), which are usually used for spatiotemporal complex systems simulation and analysis, based on the observation that chaos in CML can be controlled, so does evolution dynamics. All the chapter authors are, to the best of our knowledge, originators of the ideas mentioned above and researchers on evolutionary algorithms and chaotic dynamics as well as complex networks, who will provide benefits to the readers regarding modern scientific research on related subjects. . 000824877 588__ $$aDescription based on print version record. 000824877 650_0 $$aEvolutionary computation. 000824877 650_0 $$aSwarm intelligence. 000824877 7001_ $$aZelinka, Ivan,$$d1965- 000824877 7001_ $$aChen, G.$$q(Guanrong) 000824877 77608 $$iPrint version:$$aZelinka, Ivan$$tEvolutionary Algorithms, Swarm Dynamics and Complex Networks : Methodology, Perspectives and Implementation$$dBerlin, Heidelberg : Springer Berlin Heidelberg,c2017$$z9783662556610 000824877 830_0 $$aEmergence, complexity and computation ;$$v26. 000824877 852__ $$bebk 000824877 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-662-55663-4$$zOnline Access$$91397441.1 000824877 909CO $$ooai:library.usi.edu:824877$$pGLOBAL_SET 000824877 980__ $$aEBOOK 000824877 980__ $$aBIB 000824877 982__ $$aEbook 000824877 983__ $$aOnline 000824877 994__ $$a92$$bISE