000825054 000__ 03460cam\a2200481Ii\4500 000825054 001__ 825054 000825054 005__ 20230306144254.0 000825054 006__ m\\\\\o\\d\\\\\\\\ 000825054 007__ cr\cn\nnnunnun 000825054 008__ 171211s2018\\\\cau\\\\\o\\\\\001\0\eng\d 000825054 019__ $$a1015815054$$a1020493929$$a1021201562$$a1032278991 000825054 020__ $$a9781484232859$$q(electronic book) 000825054 020__ $$a1484232852$$q(electronic book) 000825054 020__ $$z9781484232842 000825054 020__ $$z1484232844 000825054 0247_ $$a10.1007/978-1-4842-3285-9$$2doi 000825054 035__ $$aSP(OCoLC)on1015215006 000825054 035__ $$aSP(OCoLC)1015215006$$z(OCoLC)1015815054$$z(OCoLC)1020493929$$z(OCoLC)1021201562$$z(OCoLC)1032278991 000825054 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dGW5XE$$dN$T$$dYDX$$dEBLCP$$dOCLCF$$dUAB$$dUMI$$dAZU$$dUPM$$dSTF$$dOCLCQ$$dCOO$$dOCLCQ$$dU3W$$dTOH$$dSNK 000825054 049__ $$aISEA 000825054 050_4 $$aQ325.6 000825054 08204 $$a006.3/1$$223 000825054 1001_ $$aNandy, Abhishek,$$eauthor. 000825054 24510 $$aReinforcement learning :$$bwith Open AI, TensorFlow and Keras using Python /$$cAbhishek Nandy, Manisha Biswas. 000825054 264_1 $$a[Berkeley, CA] :$$bApress,$$c[2018] 000825054 264_4 $$c©2018 000825054 300__ $$a1 online resource 000825054 336__ $$atext$$btxt$$2rdacontent 000825054 337__ $$acomputer$$bc$$2rdamedia 000825054 338__ $$aonline resource$$bcr$$2rdacarrier 000825054 347__ $$atext file$$bPDF$$2rda 000825054 500__ $$aIncludes index. 000825054 5050_ $$aChapter 1: Reinforcement Learning basics -- Chapter 2: Theory and Algorithms -- Chapter 3: Open AI basics -- Chapter 4: Getting to know Open AI and Open AI Gym the developers way -- Chapter 5: Reinforcement learning using Tensor Flow environment and Keras -- Chapter 6 Google's DeepMind and the future of Reinforcement Learning. 000825054 506__ $$aAccess limited to authorized users. 000825054 520__ $$aMaster reinforcement learning, a popular area of machine learning, starting with the basics: discover how agents and the environment evolve and then gain a clear picture of how they are inter-related. You'll then work with theories related to reinforcement learning and see the concepts that build up the reinforcement learning process. Reinforcement Learning discusses algorithm implementations important for reinforcement learning, including Markov's Decision process and Semi Markov Decision process. The next section shows you how to get started with Open AI before looking at Open AI Gym. You'll then learn about Swarm Intelligence with Python in terms of reinforcement learning. The last part of the book starts with the TensorFlow environment and gives an outline of how reinforcement learning can be applied to TensorFlow. There's also coverage of Keras, a framework that can be used with reinforcement learning. Finally, you'll delve into Google's Deep Mind and see scenarios where reinforcement learning can be used. You will: Absorb the core concepts of the reinforcement learning process Use advanced topics of deep learning and AI Work with Open AI Gym, Open AI, and Python Harness reinforcement learning with TensorFlow and Keras using Python. 000825054 588__ $$aOnline resource; title from PDF title page (viewed December 20, 2017). 000825054 650_0 $$aReinforcement learning. 000825054 7001_ $$aBiswas, Manisha,$$eauthor. 000825054 77608 $$iPrint version:$$aNandy, Abhishek.$$tReinforcement learning.$$d[Berkeley, CA] : Apress, [2018]$$z1484232844$$z9781484232842$$w(OCoLC)1005197857 000825054 852__ $$bebk 000825054 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-1-4842-3285-9$$zOnline Access$$91397441.1 000825054 909CO $$ooai:library.usi.edu:825054$$pGLOBAL_SET 000825054 980__ $$aEBOOK 000825054 980__ $$aBIB 000825054 982__ $$aEbook 000825054 983__ $$aOnline 000825054 994__ $$a92$$bISE