000825988 000__ 02467cam\a2200481Mi\4500 000825988 001__ 825988 000825988 005__ 20230306144338.0 000825988 006__ m\\\\\o\\d\\\\\\\\ 000825988 007__ cr\nn\nnnunnun 000825988 008__ 180129s2018\\\\sz\a\\\\o\\\\\000\0\eng\d 000825988 019__ $$a1026830193 000825988 020__ $$a9783319742229$$q(electronic book) 000825988 020__ $$a3319742221$$q(electronic book) 000825988 020__ $$z9783319742212 000825988 0247_ $$a10.1007/978-3-319-74222-9$$2doi 000825988 035__ $$aSP(OCoLC)on1021198196 000825988 035__ $$aSP(OCoLC)1021198196$$z(OCoLC)1026830193 000825988 040__ $$aAZU$$beng$$epn$$cAZU$$dOCLCO$$dGW5XE$$dUAB$$dFIE$$dUPM$$dOCLCQ 000825988 049__ $$aISEA 000825988 050_4 $$aQA184.2 000825988 08204 $$a512/.5$$223 000825988 1001_ $$aBornemann, Folkmar,$$d1967-$$eauthor. 000825988 24510 $$aNumerical linear algebra :$$ba concise introduction with MATLAB and Julia /$$cFolkmar Bornemann. 000825988 264_1 $$aCham :$$bSpringer,$$c2018. 000825988 300__ $$a1 online resource (x, 153 pages) :$$bcolor illustrations. 000825988 336__ $$atext$$btxt$$2rdacontent 000825988 337__ $$acomputer$$bc$$2rdamedia 000825988 338__ $$aonline resource$$bcr$$2rdacarrier 000825988 347__ $$atext file$$bPDF$$2rda 000825988 4901_ $$aSpringer Undergraduate Mathematics Series,$$x1615-2085 000825988 506__ $$aAccess limited to authorized users. 000825988 520__ $$aThis book offers an introduction to the algorithmic-numerical thinking using basic problems of linear algebra. By focusing on linear algebra, it ensures a stronger thematic coherence than is otherwise found in introductory lectures on numerics. The book highlights the usefulness of matrix partitioning compared to a component view, leading not only to a clearer notation and shorter algorithms, but also to significant runtime gains in modern computer architectures. The algorithms and accompanying numerical examples are given in the programming environment MATLAB, and additionally? in an appendix? in the future-oriented, freely accessible programming language Julia. This book is suitable for a two-hour lecture on numerical linear algebra from the second semester of a bachelor's degree in mathematics. 000825988 650_0 $$aAlgebras, Linear. 000825988 650_0 $$aMathematics. 000825988 650_0 $$aMatrix theory. 000825988 650_0 $$aAlgebra. 000825988 650_0 $$aNumerical analysis. 000825988 77608 $$iPrint version: $$z9783319742212 000825988 830_0 $$aSpringer undergraduate mathematics series. 000825988 852__ $$bebk 000825988 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-74222-9$$zOnline Access$$91397441.1 000825988 909CO $$ooai:library.usi.edu:825988$$pGLOBAL_SET 000825988 980__ $$aEBOOK 000825988 980__ $$aBIB 000825988 982__ $$aEbook 000825988 983__ $$aOnline 000825988 994__ $$a92$$bISE