000826014 000__ 05812cam\a2200601Mi\4500 000826014 001__ 826014 000826014 005__ 20230306144339.0 000826014 006__ m\\\\\o\\d\\\\\\\\ 000826014 007__ cr\nn\nnnunnun 000826014 008__ 180123s2018\\\\gw\\\\\\o\\\\\000\0\eng\d 000826014 019__ $$a1020319103$$a1021807521 000826014 020__ $$a9783319647470 000826014 020__ $$a3319647474 000826014 020__ $$z9783319647456 000826014 0247_ $$a10.1007/978-3-319-64747-0$$2doi 000826014 035__ $$aSP(OCoLC)on1021202589 000826014 035__ $$aSP(OCoLC)1021202589$$z(OCoLC)1020319103$$z(OCoLC)1021807521 000826014 040__ $$aAZU$$beng$$cAZU$$dOCLCO$$dN$T$$dGW5XE$$dEBLCP$$dUAB$$dUPM$$dMERER$$dOCLCF$$dSNK$$dYDX$$dOCLCQ 000826014 049__ $$aISEA 000826014 050_4 $$aQD71-142 000826014 08204 $$a610.28$$223 000826014 24500 $$aMiniature Fluidic Devices for Rapid Biological Detection /$$cedited by Sang-Hyun Oh, Carlos Escobedo, Alexandre G. Brolo. 000826014 264_1 $$aCham :$$bSpringer International Publishing :$$bImprint: Springer,$$c2018. 000826014 300__ $$a1 online resource (vii, 229 pages) :$$billustrations. 000826014 336__ $$atext$$btxt$$2rdacontent 000826014 337__ $$acomputer$$bc$$2rdamedia 000826014 338__ $$aonline resource$$bcr$$2rdacarrier 000826014 347__ $$atext file$$bPDF$$2rda 000826014 4901_ $$aIntegrated Analytical Systems,$$x2196-4475 000826014 504__ $$aIncludes bibliographical references and index. 000826014 5050_ $$aIntro; Preface; Contents; 1 Nanopore Membranes for Separation and Sensing; Abstract; 1 Introduction; 2 Hindered Transport; 3 Different Types of Nanopore Membranes; 3.1 Track-Etched Membranes; 3.2 Aluminum Anodic Oxide Membranes; 3.3 Template-Synthesized Membranes; 3.4 Silicon and Silicon Nitride Membranes; 4 Functionalized Membranes; 4.1 Polymer Functionalization; 4.1.1 Smart Membranes; 5 Biomolecule Separation Using Nanopore Membranes; 5.1 Separation Using Template-Synthesized Membranes; 5.2 Separation Using Thin Silicon Membranes; 6 Membranes Used as Biosensors; 6.1 Electrical Techniques 000826014 5058_ $$a6.2 Optical Techniques6.2.1 Plasmonic Nanopores; 6.2.2 Other Optical Measurements; 7 Conclusion and Outlook; References; 2 Nanoporous Gold Nanoparticles and Arrays for Label-Free Nanoplasmonic Biosensing; 1 Introduction; 2 Nanoporous Gold Disks Fabrication and Characterization; 2.1 Nanosphere Lithography and Dealloying of Au/Ag Films; 2.2 Size and Porosity Characterization; 2.3 In-Plane Dealloying; 2.4 In Situ Laser-Assisted Dealloying; 2.5 Integration of the NPG Disks into a Microfluidic Device; 3 Optical Properties of NPG Disks 000826014 5058_ $$a3.1 Localized Surface Plasmon Resonances of NPG Disks and Their Size-Dependent Tunability3.1.1 Extinction Spectra and LSPR Peaks; 3.1.2 Electric Field Distribution and Localized Field Enhancement; 3.1.3 Local Field Enhancement for SERS; 3.2 Refractive Index Sensitivity of NPG Disks LSPR; 4 Nanoporous Gold Disk Arrays in Microfluidic Sensing Applications; 4.1 Microfluidic SERS Sensor with Monolithic NPG Disks Arrays for Rapid and Label-Free Dopamine and Urea Detection; 4.1.1 Characterization of the Spatial Uniformity and Sensitivity of the Microfluidic SERS Sensor with no Flow 000826014 5058_ $$a4.1.2 SERS Detection of Rhodamine 6G with Continuous Flow4.1.3 SERS Detection of Dopamine and Urea; 4.1.4 SERS Detection of Urea at Physiological Concentrations; 4.2 In Situ SERS Monitoring of Individual DNA Hybridization in Microfluidics; 4.2.1 SERS Detection of Immobilized MS Probes; 4.2.2 In Situ Monitoring of DNA Hybridization with Varying Target ssDNA Concentrations; 4.2.3 In Situ Monitoring of DNA Hybridization with 20Â pM Target ssDNA Concentration; 5 Versatility and Performance: Nanoporous Gold Disk Arrays in Various Biomolecular Sensing Applications 000826014 5058_ $$a5.1 Reagent and Separation-Free Measurements of Urine and Creatinine Concentration by Stamping SERS on NPG Disks Arrays5.1.1 Stamping of the Analyte onto the SERS Substrate; 5.1.2 SERS Detection of Creatinine in Water and Multiplexed SERS Concentration Measurements; 5.1.3 SERS Detection of Creatinine in Nephritic Mouse Urine Samples; 5.2 NPG Disks Functionalized with G-Quadruplex Moieties for Sensing Small Molecules; 5.2.1 Design of the Label-Free SERS Sensing Platform; 5.2.2 Sensitivity for MG Detection; 5.2.3 Sensor Performance in Complex Samples and Real-World Situations 000826014 506__ $$aAccess limited to authorized users. 000826014 520__ $$aThis book presents an overview of fundamental aspects of surface-based biosensors and techniques for enhancing their detection sensitivity and speed. It focuses on rapid detection using miniaturized sensors and describes the physical principles of nanoscale transducers, surface modifications, microfluidics and reaction engineering, diffusion and kinetics. A key challenge in the field of bioanalytical sensors is the rapid delivery of target biomolecules to the sensing surface. While various nanostructures have shown great promise in sensitive detection, diffusion-limited binding of analyte molecules remains a fundamental problem. Recently, many researchers h ave put forward novel schemes to overcome this challenge, such as nanopore channels, electrokinetics, and dielectrophoresis, to name but a few. This book provides the readers an up-to-date account on these technological advances. #xE000; 000826014 650_0 $$aChemistry. 000826014 650_0 $$aAnalytical chemistry. 000826014 650_0 $$aBiotechnology. 000826014 650_0 $$aChemistry, Physical and theoretical. 000826014 650_0 $$aChemical engineering. 000826014 650_0 $$aAmorphous substances. 000826014 650_0 $$aComplex fluids. 000826014 7001_ $$aOh, Sang-Hyun.$$eeditor. 000826014 7001_ $$aEscobedo, Carlos.$$eeditor. 000826014 7001_ $$aBrolo, Alexandre G.$$eeditor. 000826014 77608 $$iPrint version: $$z9783319647456 000826014 830_0 $$aIntegrated analytical systems. 000826014 852__ $$bebk 000826014 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-64747-0$$zOnline Access$$91397441.1 000826014 909CO $$ooai:library.usi.edu:826014$$pGLOBAL_SET 000826014 980__ $$aEBOOK 000826014 980__ $$aBIB 000826014 982__ $$aEbook 000826014 983__ $$aOnline 000826014 994__ $$a92$$bISE