000827330 000__ 04888cam\a2200541Ii\4500 000827330 001__ 827330 000827330 005__ 20230306144609.0 000827330 006__ m\\\\\o\\d\\\\\\\\ 000827330 007__ cr\cn\nnnunnun 000827330 008__ 180404s2018\\\\sz\a\\\\ob\\\\000\0\eng\d 000827330 019__ $$a1030488488$$a1030613543$$a1030764203$$a1033637779 000827330 020__ $$a9783319758473$$q(electronic book) 000827330 020__ $$a3319758470$$q(electronic book) 000827330 020__ $$z9783319758466 000827330 020__ $$z3319758462 000827330 0247_ $$a10.1007/978-3-319-75847-3$$2doi 000827330 035__ $$aSP(OCoLC)on1030438586 000827330 035__ $$aSP(OCoLC)1030438586$$z(OCoLC)1030488488$$z(OCoLC)1030613543$$z(OCoLC)1030764203$$z(OCoLC)1033637779 000827330 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dYDX$$dEBLCP$$dOCLCF$$dUPM$$dAZU$$dMERER 000827330 049__ $$aISEA 000827330 050_4 $$aQA371 000827330 08204 $$a515/.43$$223 000827330 1001_ $$aGilboa, Guy,$$eauthor. 000827330 24510 $$aNonlinear Eigenproblems in image processing and computer vision /$$cGuy Gilboa. 000827330 264_1 $$aCham, Switzerland :$$bSpringer,$$c2018. 000827330 300__ $$a1 online resource (xx, 172 pages) :$$billustrations. 000827330 336__ $$atext$$btxt$$2rdacontent 000827330 337__ $$acomputer$$bc$$2rdamedia 000827330 338__ $$aonline resource$$bcr$$2rdacarrier 000827330 347__ $$atext file$$bPDF$$2rda 000827330 4901_ $$aAdvances in computer vision and pattern recognition,$$x2191-6586 000827330 504__ $$aIncludes bibliographical references. 000827330 5050_ $$aIntro; Preface; What are Nonlinear Eigenproblems and Why are They Important?; Basic Intuition and Examples; What is Covered in This Book?; References; Acknowledgements; Contents; 1 Mathematical Preliminaries; 1.1 Reminder of Very Basic Operators and Definitions; 1.1.1 Integration by Parts (Reminder); 1.1.2 Distributions (Reminder); 1.2 Some Standard Spaces; 1.3 Euler-Lagrange; 1.3.1 E-L of Some Functionals; 1.3.2 Some Useful Examples; 1.3.3 E-L of Common Fidelity Terms; 1.3.4 Norms Without Derivatives; 1.3.5 Seminorms with Derivatives; 1.4 Convex Functionals 000827330 5058_ $$a1.4.1 Convex Function and Functional1.4.2 Why Convex Functions Are Good?; 1.4.3 Subdifferential; 1.4.4 Duality-Legendre-Fenchel Transform; 1.5 One-Homogeneous Functionals; 1.5.1 Definition and Basic Properties; References; 2 Variational Methods in Image Processing; 2.1 Variation Modeling by Regularizing Functionals; 2.1.1 Regularization Energies and Their Respective E-L; 2.2 Nonlinear PDEs; 2.2.1 Gaussian Scale Space; 2.2.2 Perona-Malik Nonlinear Diffusion; 2.2.3 Weickert's Anisotropic Diffusion; 2.2.4 Steady-State Solution; 2.2.5 Inverse Scale Space; 2.3 Optical Flow and Registration 000827330 5058_ $$a2.3.1 Background2.3.2 Early Attempts for Solving the Optical Flow Problem; 2.3.3 Modern Optical Flow Techniques; 2.4 Segmentation and Clustering; 2.4.1 The Goal of Segmentation; 2.4.2 Mumford-Shah; 2.4.3 Chan-Vese Model; 2.4.4 Active Contours; 2.5 Patch-Based and Nonlocal Models; 2.5.1 Background; 2.5.2 Graph Laplacian; 2.5.3 A Nonlocal Mathematical Framework; 2.5.4 Basic Models; References; 3 Total Variation and Its Properties; 3.1 Strong and Weak Definitions; 3.2 Co-area Formula; 3.3 Definition of BV; 3.4 Basic Concepts Related to TV; 3.4.1 Isotropic and Anisotropic TV 000827330 5058_ $$a3.4.2 ROF, TV-L1, and TV FlowReferences; 4 Eigenfunctions of One-Homogeneous Functionals; 4.1 Introduction; 4.2 One-Homogeneous Functionals; 4.3 Properties of Eigenfunction; 4.4 Eigenfunctions of TV; 4.4.1 Explicit TV Eigenfunctions in 1D; 4.5 Pseudo-Eigenfunctions; 4.5.1 Measure of Affinity of Nonlinear Eigenfunctions; References; 5 Spectral One-Homogeneous Framework; 5.1 Preliminary Definitions and Settings; 5.2 Spectral Representations; 5.2.1 Scale Space Representation; 5.3 Signal Processing Analogy; 5.3.1 Nonlinear Ideal Filters; 5.3.2 Spectral Response 000827330 5058_ $$a5.4 Theoretical Analysis and Properties5.4.1 Variational Representation; 5.4.2 Scale Space Representation; 5.4.3 Inverse Scale Space Representation; 5.4.4 Definitions of the Power Spectrum; 5.5 Analysis of the Spectral Decompositions; 5.5.1 Basic Conditions on the Regularization; 5.5.2 Connection Between Spectral Decompositions; 5.5.3 Orthogonality of the Spectral Components; 5.5.4 Nonlinear Eigendecompositions; References; 6 Applications Using Nonlinear Spectral Processing; 6.1 Generalized Filters; 6.1.1 Basic Image Manipulation; 6.2 Simplification and Denoising 000827330 506__ $$aAccess limited to authorized users. 000827330 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed April 4, 2018). 000827330 650_0 $$aEigenfunctions. 000827330 650_0 $$aImage processing$$xDigital techniques$$xMathematics. 000827330 650_0 $$aComputer vision$$xMathematics. 000827330 77608 $$iPrint version: $$z3319758462$$z9783319758466$$w(OCoLC)1020028206 000827330 830_0 $$aAdvances in computer vision and pattern recognition. 000827330 852__ $$bebk 000827330 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-75847-3$$zOnline Access$$91397441.1 000827330 909CO $$ooai:library.usi.edu:827330$$pGLOBAL_SET 000827330 980__ $$aEBOOK 000827330 980__ $$aBIB 000827330 982__ $$aEbook 000827330 983__ $$aOnline 000827330 994__ $$a92$$bISE