000838548 000__ 06258cam\a2200469Ki\4500 000838548 001__ 838548 000838548 005__ 20230306144548.0 000838548 006__ m\\\\\o\\d\\\\\\\\ 000838548 007__ cr\un\nnnunnun 000838548 008__ 180412s2018\\\\sz\\\\\\ob\\\\001\0\eng\d 000838548 020__ $$a9783319760421$$q(electronic book) 000838548 020__ $$a3319760424$$q(electronic book) 000838548 020__ $$z9783319760414 000838548 0247_ $$a10.1007/978-3-319-76042-1$$2doi 000838548 035__ $$aSP(OCoLC)on1031090565 000838548 035__ $$aSP(OCoLC)1031090565 000838548 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dGW5XE$$dEBLCP$$dOCLCF$$dFIE$$dUAB$$dOCLCQ 000838548 049__ $$aISEA 000838548 050_4 $$aQA273.6 000838548 08204 $$a519.24$$223 000838548 1001_ $$aThomopoulos, Nicholas T.,$$eauthor. 000838548 24510 $$aProbability distributions :$$bwith truncated, log and bivariate extensions /$$cNick T. Thomopoulos. 000838548 264_1 $$aCham :$$bSpringer,$$c2018. 000838548 300__ $$a1 online resource. 000838548 336__ $$atext$$btxt$$2rdacontent 000838548 337__ $$acomputer$$bc$$2rdamedia 000838548 338__ $$aonline resource$$bcr$$2rdacarrier 000838548 347__ $$atext file$$bPDF$$2rda 000838548 504__ $$aIncludes bibliographical references and index. 000838548 5050_ $$aIntro; In Memory of Nick T. Thomopoulos; Preface; Acknowledgments; Contents; About the Author; Chapter 1: Continuous Distributions; 1.1 Introduction; 1.2 Sample Data Statistics; 1.3 Notation; 1.4 Parameter Estimating Methods; 1.5 Transforming Variables; Transform Data to (0,1); Transform Data to (x 0); 1.6 Continuous Random Variables; 1.7 Continuous Uniform; Coefficient of Variation; Parameter Estimates; 1.8 Exponential; Parameter Estimate; 1.9 Erlang; Coefficient-of-Variation; Parameter Estimates; Cumulative Probability; 1.10 Gamma; Parameter Estimates; Cumulative Probability Estimates 000838548 5058_ $$a1.11 BetaStandard Beta; Mean and Variance; Parameter Estimates; 1.12 Weibull; Weibull Plot; Parameter Estimates; 1.13 Normal; Standard Normal Distribution; Coefficient of Variation; Parameter Estimates; 1.14 Lognormal; Parameter Estimates; 1.15 Summary; References; Chapter 2: Discrete Distributions; 2.1 Introduction; 2.2 Discrete Random Variables; Lexis Ratio; 2.3 Discrete Uniform; Parameter Estimates; 2.4 Binomial; Lexis Ratio; Parameter Estimates; Normal Approximation; Poisson Approximation; 2.5 Geometric; Number of Trials; Number of Failures; Lexis Ratio; Parameter Estimate; 2.6 Pascal 000838548 5058_ $$aNumber of TrialsLexis Ratio; Parameter Estimate; Number of Failures; Lexis Ratio; Parameter Estimate; 2.7 Poisson; Lexis Ratio; Relation to the Exponential Distribution; Parameter Estimate; 2.8 Hyper Geometric; Parameter Estimate; 2.9 Summary; References; Chapter 3: Standard Normal; 3.1 Introduction; 3.2 Gaussian Distribution; 3.3 Some Relations on the Standard Normal Distribution; 3.4 Normal Distribution; 3.5 Standard Normal; 3.6 Hastings Approximations; 3.7 Table Values of the Standard Normal; 3.8 Discrete Normal Distribution; 3.9 Summary; References; Chapter 4: Partial Expectation 000838548 5058_ $$a4.1 Introduction4.2 Partial Expectation; 4.3 Left Location Parameter; Table Entries; 4.4 Inventory Management; 4.5 Right Location Parameter; 4.6 Advance Demand; 4.7 Summary; References; Chapter 5: Left Truncated Normal; 5.1 Introduction; 5.2 Left-Location Parameter; 5.3 Mathematical Equations; 5.4 Table Entries; 5.5 More Tables; 5.6 Left Truncated Distribution; 5.7 Application to Sample Data; 5.8 LTN for Inventory Control; Automotive Service Parts Distribution Center; Retail Products; 5.9 Summary; References; Chapter 6: Right Truncated Normal; 6.1 Introduction 000838548 506__ $$aAccess limited to authorized users. 000838548 520__ $$aThis volume presents a concise and practical overview of statistical methods and tables not readily available in other publications. It begins with a review of the commonly used continuous and discrete probability distributions. Several useful distributions that are not so common and less understood are described with examples and applications in full detail: discrete normal, left-partial, right-partial, left-truncated normal, right-truncated normal, lognormal, bivariate normal, and bivariate lognormal. Table values are provided with examples that enable researchers to easily apply the distributions to real applications and sample data. The left- and right-truncated normal distributions offer a wide variety of shapes in contrast to the symmetrically shaped normal distribution, and a newly developed spread ratio enables analysts to determine which of the three distributions best fits a particular set of sample data. The book will be highly useful to anyone who does statistical and probability analysis. This includes scientists, economists, management scientists, market researchers, engineers, mathematicians, and students in many disciplines. Nick T. Thomopoulos, Ph.D., has degrees in business (B.S.) and in mathematics (M.A.) from the University of Illinois, and in industrial engineering (Ph.D.) from Illinois Institute of Technology (Illinois Tech). He was supervisor of operations research at International Harvester; senior scientist at the IIT Research Institute; and Professor in Industrial Engineering and in the Stuart School of Business at Illinois Tech. He is the author of eleven books including Fundamentals of Queuing Systems (Springer), Essentials of Monte Carlo Simulation (Springer), Applied Forecasting Methods (Prentice Hall), and Fundamentals of Production, Inventory and the Supply Chain (Atlantic). He has published many papers and has consulted in a wide variety of industries in the United States, Europe and Asia. Dr. Thomopoulos has received honors over the years, such as the Rist Prize from the Military Operations Research Society for new developments in queuing theory; the Distinguished Professor Award in Bangkok, Thailand from the Illinois Tech Asian Alumni Association; and the Professional Achievement Award from the Illinois Tech Alumni Association.--$$cProvided by publisher. 000838548 588__ $$aOnline resource; title from PDF title page (viewed April 16, 2018). 000838548 650_0 $$aDistribution (Probability theory) 000838548 650_0 $$aTheory of distributions (Functional analysis) 000838548 852__ $$bebk 000838548 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-76042-1$$zOnline Access$$91397441.1 000838548 909CO $$ooai:library.usi.edu:838548$$pGLOBAL_SET 000838548 980__ $$aEBOOK 000838548 980__ $$aBIB 000838548 982__ $$aEbook 000838548 983__ $$aOnline 000838548 994__ $$a92$$bISE