000838717 000__ 06829cam\a2200553Ii\4500 000838717 001__ 838717 000838717 005__ 20230306144557.0 000838717 006__ m\\\\\o\\d\\\\\\\\ 000838717 007__ cr\un\nnnunnun 000838717 008__ 180423s2018\\\\si\a\\\\o\\\\\100\0\eng\d 000838717 019__ $$a1032575472$$a1032687761$$a1032703722$$a1033534160$$a1033553164$$a1034548991$$a1038456306 000838717 020__ $$a9789811085185$$q(electronic book) 000838717 020__ $$a9811085188$$q(electronic book) 000838717 020__ $$z9789811085178 000838717 020__ $$z981108517X 000838717 0247_ $$a10.1007/978-981-10-8518-5$$2doi 000838717 035__ $$aSP(OCoLC)on1032006310 000838717 035__ $$aSP(OCoLC)1032006310$$z(OCoLC)1032575472$$z(OCoLC)1032687761$$z(OCoLC)1032703722$$z(OCoLC)1033534160$$z(OCoLC)1033553164$$z(OCoLC)1034548991$$z(OCoLC)1038456306 000838717 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dN$T$$dOCLCO$$dYDX$$dEBLCP$$dAZU$$dUWO$$dUPM$$dUAB$$dOCLCF$$dOCLCQ 000838717 049__ $$aISEA 000838717 050_4 $$aTS183 000838717 08204 $$a670$$223 000838717 1112_ $$aAll India Manufacturing Technology Design and Research Conference$$n(27th :$$d2016 :$$cPune, India) 000838717 24510 $$aSimulations for design and manufacturing :$$bselect papers from AIMTDR 2016 /$$cedited by Uday S. Dixit, Ravi Kant. 000838717 2463_ $$aAIMTDR 2016 000838717 264_1 $$aSingapore :$$bSpringer,$$c2018. 000838717 300__ $$a1 online resource (xxii, 292 pages) :$$billustrations. 000838717 336__ $$atext$$btxt$$2rdacontent 000838717 337__ $$acomputer$$bc$$2rdamedia 000838717 338__ $$aonline resource$$bcr$$2rdacarrier 000838717 347__ $$atext file$$bPDF$$2rda 000838717 4901_ $$aLecture notes on multidisciplinary industrial engineering,$$x2522-5022 000838717 5050_ $$aIntro; Preface; About the AIMTDR Conference; Mission, Vision, Challenges and Direction of AIMTDR Conference; AIMTDR 2016 Conference: Objectives and Organization; Editorial Acknowledgements; Contents; About the Editors; 1 Study on the Delamination of GFRP Composites in Drilling: A Finite Element Model; 1 Introduction; 1.1 Mechanism of Drilling; 1.1.1 Thrust Force; 1.1.2 Torque; 1.1.3 Radial Components of the Cutting Forces; 1.2 Problems Associated with Drilling of FRPs; 1.2.1 Abrasive Tool Wear; 1.2.2 Thermal Softening of Matrix; 1.2.3 Matrix Cracking; 1.2.4 Fiber Pullout; 1.2.5 Fuzzing 000838717 5058_ $$a1.2.6 Delamination1.3 Delamination Mechanism; 1.3.1 Peel-Up Delamination Mechanism; 1.3.2 Pushout Delamination; 2 Literature Review; 2.1 Experimental Methods; 2.2 Analytical Methods; 2.3 Finite Element Method; 3 Finite Element Formulation; 3.1 Modeling of Twist Drill; 3.2 Workpiece Modeling; 3.3 Material Modeling; 3.3.1 Material Constitutive Relation for the Bulk Material; 3.3.2 Damage Modeling for FRP Composites; Tsai-Hill Criteria; Inter-Ply Failure: Delamination; Constitutive Behavior for Traction-Separation Modeling of Cohesive Zone; 3.4 User Subroutine "VUSDFLD"; 3.5 Mesh Generation 000838717 5058_ $$a3.5.1 Mass Scaling Analysis3.6 Interaction and Contact Definition; 3.7 Boundary Conditions and Loads; 4 Results and Discussion; 4.1 Effect of Feed Rate on Thrust Force and Torque; 4.2 Effect of Speed on Thrust Force and Torque; 4.3 Effect of Drill Point Angle on Thrust Force and Torque; 5 Conclusions; References; 2 Computational Fluid Dynamics Analysis of MQL Spray Parameters and Its Influence on MQL Milling of SS304; 1 Introduction; 1.1 Classification of MQL; 1.2 Mist Formation in MQL; 1.3 Effect of Pressure and Flow Rate Over Droplet Size; 1.4 Effect of Droplet Deposition Distance 000838717 5058_ $$a1.5 Effect of Nozzle Position1.6 Experimental Techniques to Determine Droplet Size; 1.6.1 Optical Imaging Analyzers; 1.6.2 Laser Diffraction Analyzers; 1.6.3 Phase-Doppler Particle Analyzers (PDPA); 2 CFD Simulations for MQL Milling; 2.1 Numerical Modeling and Simulation of MQL; 2.2 CAD Model; 2.3 Grid Partitioning and Meshing; 2.3.1 Grid Partitioning; 2.3.2 Boundary Conditions; 2.4 Assumptions; 2.5 CFD Simulation; 2.5.1 Turbulence Model; 2.5.2 Discrete Phase Model (DPM); Governing Equations for DPM; 2.6 MQL Droplet Size Prediction; 2.7 Experimental Validation; 3 Experimentation 000838717 5058_ $$a3.1 Experimental Setup3.2 Experimental Results; 3.2.1 Effect of Air Pressure; 3.2.2 Effect of Flow Rate; 3.2.3 Effect of Droplet Size; 3.2.4 Effect of Wetting Area; 3.2.5 Micrograph Analysis; 4 Conclusions; References; 3 Finite Element Method and Experimental Study of Self-reacting Friction Stir Welding of Aluminium Alloy AA6061-T6; 1 Introduction; 2 Experimental Procedure; 3 Numerical Model; 3.1 Model Description; 3.2 Material Properties; 3.3 Boundary Conditions; 4 Results and Discussion; 5 Conclusions; References 000838717 506__ $$aAccess limited to authorized users. 000838717 520__ $$aThis book focuses on numerical simulations of manufacturing processes, discussing the use of numerical simulation techniques for design and analysis of the components and the manufacturing systems. Experimental studies on manufacturing processes are costly, time consuming and limited to the facilities available. Numerical simulations can help study the process at a faster rate and for a wide range of process conditions. They also provide good prediction accuracy and deeper insights into the process. The simulation models do not require any pre-simulation, experimental or analytical results, making them highly suitable and widely used for the reliable prediction of process outcomes. The book is based on selected proceedings of AIMTDR 2016. The chapters discuss topics relating to various simulation techniques, such as computational fluid dynamics, heat flow, thermo-mechanical analysis, molecular dynamics, multibody dynamic analysis, and operational modal analysis. These simulation techniques are used to: 1) design the components, 2) to investigate the effect of critical process parameters on the process outcome, 3) to explore the physics of the process, 4) to analyse the feasibility of the process or design, and 5) to optimize the process. A wide range of advanced manufacturing processes are covered, including friction stir welding, electro-discharge machining, electro-chemical machining, magnetic pulse welding, milling with MQL (minimum quantity lubrication), electromagnetic cladding, abrasive flow machining, incremental sheet forming, ultrasonic assisted turning, TIG welding, and laser sintering. This book will be useful to researchers and professional engineers alike. . 000838717 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed April 23, 2018). 000838717 650_0 $$aManufacturing processes$$xSimulation methods$$vCongresses. 000838717 7001_ $$aDixit, Uday S.,$$eeditor. 000838717 7001_ $$aKant, Ravi,$$eeditor. 000838717 77608 $$iPrint version: $$z981108517X$$z9789811085178$$w(OCoLC)1020633088 000838717 830_0 $$aLecture notes on multidisciplinary industrial engineering. 000838717 852__ $$bebk 000838717 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-981-10-8518-5$$zOnline Access$$91397441.1 000838717 909CO $$ooai:library.usi.edu:838717$$pGLOBAL_SET 000838717 980__ $$aEBOOK 000838717 980__ $$aBIB 000838717 982__ $$aEbook 000838717 983__ $$aOnline 000838717 994__ $$a92$$bISE