000839354 000__ 04527cam\a2200529M\\4500 000839354 001__ 839354 000839354 005__ 20230306144644.0 000839354 006__ m\\\\\o\\d\\\\\\\\ 000839354 007__ cr\un\nnnunnun 000839354 008__ 180522s2018\\\\sz\\\\\\ob\\\\000\0\eng\d 000839354 019__ $$a1040612723 000839354 020__ $$a9783319899381$$q(electronic book) 000839354 020__ $$a3319899384$$q(electronic book) 000839354 020__ $$z9783319899374 000839354 020__ $$z3319899376 000839354 0247_ $$a10.1007/978-3-319-89938-1$$2doi 000839354 035__ $$aSP(OCoLC)on1036734953 000839354 035__ $$aSP(OCoLC)1036734953$$z(OCoLC)1040612723 000839354 040__ $$aYDX$$beng$$cYDX$$dGW5XE$$dEBLCP$$dN$T$$dAZU$$dUAB$$dOCLCF$$dOCLCQ 000839354 049__ $$aISEA 000839354 050_4 $$aTK7872.S8 000839354 08204 $$a621.3/5$$223 000839354 1001_ $$aVan Dyke, John S. 000839354 24510 $$aElectronic and magentic excitations in correlated and topological materials /$$cJohn S. Van Dyke. 000839354 260__ $$aCham :$$bSpringer,$$c2018. 000839354 300__ $$a1 online resource. 000839354 336__ $$atext$$btxt$$2rdacontent 000839354 337__ $$acomputer$$bc$$2rdamedia 000839354 338__ $$aonline resource$$bcr$$2rdacarrier 000839354 347__ $$atext file$$bPDF$$2rda 000839354 4901_ $$aSpringer theses 000839354 500__ $$a"Doctoral thesis accepted by University of Illinois at Chicago, Chicago, Illinois, USA." 000839354 504__ $$aIncludes bibliographical references. 000839354 5050_ $$aIntro; Supervisor's Foreword; Contents; Published Results and Contribution of Authors; 1 Introduction; 1.1 Correlations in Condensed Matter; 1.2 Topological Materials; References; 2 Superconducting Gap in CeCoIn5; 2.1 Superconducting Gap Symmetry; 2.2 Basics of Scanning Tunneling and Quasiparticle Interference Spectroscopy; 2.3 Experimental Challenge of QPI for CeCoIn5; 2.4 Theoretical Model for CeCoIn5 Band Structure; 2.5 Theory of Heavy Fermion QPI; 2.6 CeCoIn5 QPI at Large Energies; 2.7 CeCoIn5 QPI at Small Energies; References; 3 Pairing Mechanism in CeCoIn5 000839354 5058_ $$a3.1 Heavy Fermion Superconductivity3.2 Extraction of the Magnetic Interaction; 3.3 Phase-Sensitive QPI; 3.4 Spin Excitations in CeCoIn5; 3.4.1 Magnetic Resonance Peak; 3.4.2 NMR Spin-Lattice Relaxation Rate; References; 4 Real and Momentum Space Probes in CeCoIn5: Defect States in Differential Conductance and Neutron Scattering Spin Resonance; 4.1 Real-Space Study of Defects by STM; 4.1.1 Model; 4.2 Neutron Scattering in CeCoIn5; 4.2.1 Magnetic Anisotropy and External Magnetic Field; References; 5 Transport in Nanoscale Kondo Lattices; 5.1 Transport in a Clean System 000839354 5058_ $$a5.2 Transport with Defects5.3 Multiple Defects; 5.4 Hopping Within the f-Band; 5.5 Self-Consistency with Finite Bias; References; 6 Charge and Spin Currents in Nanoscale Topological Insulators; 6.1 Introduction; 6.2 Model; 6.3 Polarized Spin Currents; 6.4 Non-magnetic Defects; 6.5 Magnetic Defects; 6.5.1 Ising-Type Magnetic Defects; 6.5.2 Spin-Flip-Type Magnetic Defects; 6.6 Heisenberg Defects and Spin Diodes; 6.7 Interface with Ferro- and Antiferromagnets; 6.8 Robustness of the Spin-Polarized Currents; References; 7 Conclusion; References; Appendix A Keldysh Formalism for Transport 000839354 506__ $$aAccess limited to authorized users. 000839354 520__ $$aThis thesis reports a major breakthrough in discovering the superconducting mechanism in CeCoIn5, the “hydrogen atom” among heavy fermion compounds. By developing a novel theoretical formalism, the study described herein succeeded in extracting the crucial missing element of superconducting pairing interaction from scanning tunneling spectroscopy experiments. This breakthrough provides a theoretical explanation for a series of puzzling experimental observations, demonstrating that strong magnetic interactions provide the quantum glue for unconventional superconductivity. Additional insight into the complex properties of strongly correlated and topological materials was provided by investigating their non-equilibrium charge and spin transport properties. The findings demonstrate that the interplay of magnetism and disorder with strong correlations or topology leads to complex and novel behavior that can be exploited to create the next generation of spin electronics and quantum computing devices. 000839354 588__ $$aDescription based on print version record. 000839354 650_0 $$aSuperconductors. 000839354 650_0 $$aSpin excitations. 000839354 77608 $$iPrint version:$$z3319899376$$z9783319899374$$w(OCoLC)1029205693 000839354 830_0 $$aSpringer theses. 000839354 852__ $$bebk 000839354 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-89938-1$$zOnline Access$$91397441.1 000839354 909CO $$ooai:library.usi.edu:839354$$pGLOBAL_SET 000839354 980__ $$aEBOOK 000839354 980__ $$aBIB 000839354 982__ $$aEbook 000839354 983__ $$aOnline 000839354 994__ $$a92$$bISE