000841658 000__ 14795nam\a2201213\i\4500 000841658 001__ 841658 000841658 003__ MiAaPQ 000841658 005__ 20211103003903.0 000841658 006__ m\\\\\o\\d\\\\\\\\ 000841658 007__ cr\cn\nnnunnun 000841658 008__ 150124s2015\\\\nyua\\\\oab\\\001\0\eng\d 000841658 020__ $$z9781606501702$$qprint 000841658 020__ $$a9781606501719$$q(electronic bk.) 000841658 0247_ $$z10.5643/9781606501719$$2doi 000841658 035__ $$a(MiAaPQ)EBC1911737 000841658 035__ $$a(Au-PeEL)EBL1911737 000841658 035__ $$a(CaPaEBR)ebr11007943 000841658 035__ $$a(CaONFJC)MIL688128 000841658 035__ $$a(OCoLC)899728211 000841658 040__ $$aMiAaPQ$$beng$$erda$$epn$$cMiAaPQ$$dMiAaPQ 000841658 050_4 $$aTS156.8$$b.M357 2015 000841658 0820_ $$a629.83$$223 000841658 1001_ $$aMcMillan, Gregory K.,$$d1946-,$$eauthor. 000841658 24510 $$aTuning and control loop performance /$$cGregory K. McMillan. 000841658 250__ $$aFourth edition. 000841658 264_1 $$aNew York, [New York] (222 East 46th Street, New York, NY 10017) :$$bMomentum Press,$$c2015. 000841658 300__ $$a1 online resource (xxxiv, 546 pages) :$$billustrations. 000841658 336__ $$atext$$2rdacontent 000841658 337__ $$acomputer$$2rdamedia 000841658 338__ $$aonline resource$$2rdacarrier 000841658 4901_ $$aManufacturing and engineering collection 000841658 504__ $$aIncludes bibliographical references (pages 523-527) and index. 000841658 5050_ $$a1. Fundamentals -- 1.1 Introduction -- 1.1.1 Perspective -- 1.1.2 Overview -- 1.1.3 Recommendations -- 1.2 PID controller -- 1.2.1 Proportional mode -- 1.2.2 Integral mode -- 1.2.3 Derivative mode -- 1.2.4 ARW and output limits -- 1.2.5 Control action and valve action -- 1.2.6 Operating modes -- 1.3 Loop dynamics -- 1.3.1 Types of process responses -- 1.3.2 Dead times and time constants -- 1.3.3 Open loop self-regulating and integrating process gains -- 1.3.4 Deadband, resolution, and threshold sensitivity -- 1.4 Typical mode settings -- 1.5 Typical tuning methods -- 1.5.1 Lambda tuning for self-regulating processes -- 1.5.2 Lambda tuning for integrating processes -- 1.5.3 IMC tuning for self-regulating processes -- 1.5.4 IMC tuning for integrating processes -- 1.5.5 Skogestad internal model control tuning for self-regulating processes -- 1.5.6 SIMC tuning for integrating processes -- 1.5.7 Traditional open loop tuning -- 1.5.8 Modified Ziegler-Nichols reaction curve tuning -- 1.5.9 Modified Ziegler-Nichols ultimate oscillation tuning -- 1.5.10 Quarter amplitude oscillation tuning -- 1.5.11 SCM tuning for self-regulating processes -- 1.5.12 SCM tuning for integrating processes -- 1.5.13 SCM tuning for runaway processes -- 1.5.14 Maximizing absorption of variability tuning for surge tank level -- 1.6 Test results -- 1.6.1 Performance of tuning settings on dead time dominant processes -- 1.6.2 Performance of tuning settings on near-integrating processes -- 1.6.3 Performance of tuning settings on true integrating processes -- 1.6.4 Performance of tuning settings on runaway processes -- 1.6.5 Slow oscillations from low PID gain in integrating and runaway processes -- 1.6.6 Performance of tuning methods on various processes -- Key points -- 000841658 5058_ $$a2. Unified methodology -- 2.1 Introduction -- 2.1.1 Perspective -- 2.1.2 Overview -- 2.1.3 Recommendations -- 2.2 PID features -- 2.2.1 PID form -- 2.2.2 External reset feedback -- 2.2.3 PID structure -- 2.2.4 Split range -- 2.2.5 Signal characterization -- 2.2.6 Feedforward -- 2.2.7 Decoupling -- 2.2.8 Output tracking and remote output -- 2.2.9 Setpoint filter, lead-lag, and rate limits -- 2.2.10 Enhanced PID for wireless and analyzers -- 2.3 Automation system difficulties -- 2.3.1 Open loop gain problems -- 2.3.2 Time constant problems -- 2.3.3 Dead time problems -- 2.3.4 Limit cycle problems -- 2.3.5 Noise problems -- 2.3.6 Accuracy and precision problems -- 2.4 Process objectives -- 2.4.1 Maximize turndown -- 2.4.2 Maximize safety and environmental protection -- 2.4.3 Minimize product variability -- 2.4.4 Maximize process efficiency and capacity -- 2.5 Step-by-step solutions -- 2.6 Test results -- Key points -- 000841658 5058_ $$a3. Performance criteria -- 3.1 Introduction -- 3.1.1 Perspective -- 3.1.2 Overview -- 3.1.3 Recommendations -- 3.2 Disturbance response metrics -- 3.2.1 Accumulated error -- 3.2.2 Peak error -- 3.2.3 Disturbance lag -- 3.3 Setpoint response metrics -- 3.3.1 Rise time -- 3.3.2 Overshoot and undershoot -- Key points -- 000841658 5058_ $$a4. Effect of process dynamics -- 4.1 Introduction -- 4.1.1 Perspective -- 4.1.2 Overview -- 4.1.3 Recommendations -- 4.2 Effect of mechanical design -- 4.2.1 Equipment and piping dynamics -- 4.2.2 Common equipment and piping design mistakes -- 4.3 Estimation of total dead time -- 4.4 Estimation of open loop gain -- 4.5 Major types of process responses -- 4.5.1 Self-regulating processes -- 4.5.2 Integrating processes -- 4.5.3 Runaway processes -- 4.6 Examples -- 4.6.1 Waste treatment pH loops (self-regulating process) -- 4.6.2 Boiler feedwater flow loop (self-regulating process) -- 4.6.3 Boiler drum level loop (integrating process) -- 4.6.4 Furnace pressure loop (near-integrating process) -- 4.6.5 Exothermic reactor cascade temperature loop (runaway process) -- 4.6.6 Biological reactor biomass concentration loop (runaway process) -- Key points -- 000841658 5058_ $$a5. Effect of controller dynamics -- 5.1 Introduction -- 5.1.1 Perspective -- 5.1.2 Overview -- 5.1.3 Recommendations -- 5.2 Execution rate and filter time -- 5.2.1 First effect via equation for integrated error -- 5.2.2 Second effect via equations for implied dead time -- 5.3 Smart reset action -- 5.4 Diagnosis of tuning problems -- 5.5 Furnace pressure loop example (near-integrating) -- 5.6 Test results -- Key points -- 000841658 5058_ $$a6. Effect of measurement dynamics -- 6.1 Introduction -- 6.1.1 Perspective -- 6.1.2 Overview -- 6.1.3 Recommendations -- 6.2 Wireless update rate and transmitter damping -- 6.2.1 First effect via equation for integrated error -- 6.2.2 Second effect via equations for implied dead time -- 6.3 Analyzers -- 6.4 Sensor lags and delays -- 6.5 Noise and repeatability -- 6.6 Threshold sensitivity and resolution limits -- 6.7 Rangeability (turndown) -- 6.8 Runaway processes -- 6.9 Accuracy, precision, and drift -- 6.10 Attenuation and deception -- 6.11 Examples -- 6.11.1 Waste treatment pH loop (self-regulating process) -- 6.11.2 Boiler feedwater flow loop (self-regulating process) -- 6.11.3 Boiler drum level loop (integrating process) -- 6.11.4 Furnace pressure loop (near-integrating process) -- 6.11.5 Exothermic reactor cascade temperature loop (runaway process) -- 6.11.6 Biological reactor biomass concentration loop (runaway process) -- 6.12 Test results -- Key points -- 000841658 5058_ $$a7. Effect of valve and variable frequency drive dynamics -- 7.1 Introduction -- 7.1.1 Perspective -- 7.1.2 Overview -- 7.1.3 Recommendations -- 7.2 Valve positioners and accessories -- 7.2.1 Pneumatic positioners -- 7.2.2 Digital positioners -- 7.2.3 Current to pneumatic (I/P) transducers -- 7.2.4 Solenoid valves -- 7.2.5 Volume boosters -- 7.3 Actuators, shafts, and stems -- 7.3.1 Diaphragm actuators -- 7.3.2 Piston actuators -- 7.3.3 Linkages and connections -- 7.4 VFD system design -- 7.4.1 Pulse width modulation -- 7.4.2 Cable problems -- 7.4.3 Bearing problems -- 7.4.4 Speed slip -- 7.4.5 Motor requirements -- 7.4.6 Drive controls -- 7.5 Dynamic response -- 7.5.1 Control valve response -- 7.5.2 VFD response -- 7.5.3 Dead time approximation -- 7.5.4 Deadband and resolution -- 7.5.5 When is a valve or VFD too slow? -- 7.5.6 Limit cycles -- 7.6 Installed flow characteristics and rangeability -- 7.6.1 Valve flow characteristics -- 7.6.2 Valve rangeability -- 7.6.3 VFD flow characteristics -- 7.6.4 VFD rangeability -- 7.7 Best practices -- 7.7.1 Control valve design specifications -- 7.7.2 VFD design specifications -- 7.8 Test results -- Key points -- 000841658 5058_ $$a8. Effect of disturbances -- 8.1 Introduction -- 8.1.1 Perspective -- 8.1.2 Overview -- 8.1.3 Recommendations -- 8.2 Disturbance dynamics -- 8.2.1 Load time constants -- 8.2.2 Load rate limit -- 8.2.3 Disturbance dead time -- 8.2.4 Disturbance oscillations -- 8.3 Disturbance location -- 8.4 Disturbance troubleshooting -- 8.4.1 Sources of fast oscillations -- 8.4.2 Sources of slow oscillations -- 8.5 Disturbance mitigation -- 8.6 Test results -- Key points -- 000841658 5058_ $$a9. Effect of nonlinearities -- 9.1 Introduction -- 9.1.1 Perspective -- 9.1.2 Overview -- 9.1.3 Recommendations -- 9.2 Variable gain -- 9.2.1 Cascade control -- 9.2.2 Reversals of process sign -- 9.2.3 Signal characterization -- 9.2.4 Gain scheduling -- 9.2.5 Adaptive control -- 9.2.6 Gain margin -- 9.3 Variable dead time -- 9.4 Variable time constant -- 9.5 Inverse response -- 9.6 Test results -- Key points -- 000841658 5058_ $$a10. Effect of interactions -- 10.1 Introduction -- 10.1.1 Perspective -- 10.1.2 Overview -- 10.1.3 Recommendations -- 10.2 Pairing -- 10.2.1 Relative gain array -- 10.2.2 Distillation column example -- 10.2.3 Static mixer example -- 10.2.4 Hidden control loops -- 10.2.5 Relative gains less than zero -- 10.2.6 Relative gains from zero to one -- 10.2.7 Relative gains greater than one -- 10.2.8 Model predictive control -- 10.3 Decoupling -- 10.4 Directional move suppression -- 10.5 Tuning -- 10.6 Test results -- Key points -- 000841658 5058_ $$a11. Cascade control -- 11.1 Introduction -- 11.1.1 Perspective -- 11.1.2 Overview -- 11.1.3 Recommendations -- 11.2 Configuration and tuning -- 11.3 Process control benefits -- 11.4 Process knowledge benefits -- 11.5 Watch-outs -- 11.6 Test results -- Key points -- 000841658 5058_ $$a12. Advanced regulatory control -- 12.1 Introduction -- 12.1.1 Perspective -- 12.1.2 Overview -- 12.1.3 Recommendations -- 12.2 Feedforward control -- 12.2.1 Opportunities -- 12.2.2 Watch-outs -- 12.3 Intelligent output action -- 12.3.1 Opportunities -- 12.3.2 Watch-outs -- 12.4 Intelligent integral action -- 12.4.1 Opportunities -- 12.4.2 Watch-outs -- 12.5 Dead time compensation -- 12.5.1 Opportunities -- 12.5.2 Watch-outs -- 12.6 Valve position control -- 12.6.1 Opportunities -- 12.6.2 Watch-outs -- 12.7 Override control -- 12.7.1 Opportunities -- 12.7.2 Watch-outs -- 12.8 Test results -- Key points -- 000841658 5058_ $$a13. Process control improvement -- 13.1 Introduction -- 13.1.1 Perspective -- 13.1.2 Overview -- 13.1.3 Recommendations -- 13.2 Unit operation metrics -- 13.3 Opportunities -- 13.3.1 Variability -- 13.3.2 Increasing capacity and efficiency -- 13.3.3 Effective use of models -- 13.3.4 Sizing and assessment -- 13.4 Key questions -- Key points -- 000841658 5058_ $$a14. Auto tuners and adaptive control -- 14.1 Introduction -- 14.1.1 Perspective -- 14.1.2 Overview -- 14.1.3 Recommendations -- 14.2 Methodology -- Key points -- 000841658 5058_ $$a15. Batch optimization -- 15.1 Introduction -- 15.1.1 Perspective -- 15.1.2 Overview -- 15.1.3 Recommendations -- 15.2 Cycle time -- 15.3 Profile -- 15.4 End point -- Key points -- 000841658 5058_ $$aAppendix A. Automation system performance top 10 concepts -- Appendix B. Basics of PID controllers -- Appendix C. Controller performance -- Appendix D. Discussion -- Appendix E. Enhanced PID for wireless and analyzer applications -- Appendix F. First principle process relationships -- Appendix G. Gas pressure dynamics -- Appendix H. Convective heat transfer coefficients -- Appendix I. Interactive to noninteractive time constant conversion -- Appendix. Jacket and coil temperature control -- Appendix K. PID forms and conversion of tuning settings -- Appendix L. Liquid mixing dynamics -- Appendix M. Measurement speed requirements for SIS -- References -- Bibliography -- About the author -- Index. 000841658 506__ $$aAccess limited to authorized users. 000841658 5203_ $$aThe proportional-integral-derivative (PID) controller is the heart of every control system in the process industry. Given the proper setup and tuning, the PID has proven to have the capability and flexibility needed to meet nearly all of industry's basic control requirements. However, the information to support the best use of these features has fallen behind the progress of improved functionality. Additionally, there is considerable disagreement on the tuning rules that largely stems from a misunderstanding of how tuning rules have evolved and the lack of recognition of the effect of automation system dynamics and the incredible spectrum of process responses, disturbances, and performance objectives. This book provides the knowledge to eliminate the misunderstandings, realize the difference between theoretical and industrial application of PID control, address practical difficulties, improve field automation system design, use the latest PID features, and ultimately get the best tuning settings that enables the PID to achieve its full potential. 000841658 588__ $$aTitle from PDF title page (viewed on January 24, 2015). 000841658 650_0 $$aProcess control. 000841658 650_0 $$aFeedback control systems. 000841658 653__ $$aadaptive control 000841658 653__ $$aadvanced regulatory control 000841658 653__ $$aanalyzer response 000841658 653__ $$aauto tuner 000841658 653__ $$aautomation system 000841658 653__ $$abatch optimization 000841658 653__ $$abioreactor control 000841658 653__ $$acascade control 000841658 653__ $$acompressor control 000841658 653__ $$acontrol loop performance 000841658 653__ $$acontrol valve response 000841658 653__ $$aexternal reset feedback 000841658 653__ $$afeedforward control 000841658 653__ $$ainverse response 000841658 653__ $$alambda tuning 000841658 653__ $$alevel control 000841658 653__ $$ameasurement response 000841658 653__ $$apH control 000841658 653__ $$aPID control 000841658 653__ $$aPID execution rate 000841658 653__ $$aPID filter 000841658 653__ $$aPID form 000841658 653__ $$aPID structure 000841658 653__ $$aPID tuning 000841658 653__ $$apressure control 000841658 653__ $$aprocess control 000841658 653__ $$aprocess disturbances 000841658 653__ $$aprocess dynamics 000841658 653__ $$aprocess interaction 000841658 653__ $$aprocess metrics 000841658 653__ $$aprocess nonlinearity 000841658 653__ $$aprocess performance 000841658 653__ $$aprocess response 000841658 653__ $$aproportional-integral-derivative controller 000841658 653__ $$areactor control 000841658 653__ $$arunaway reaction 000841658 653__ $$atemperature control 000841658 653__ $$avalve deadband 000841658 653__ $$avalve position control 000841658 653__ $$avalve resolution 000841658 653__ $$avariable frequency drive response 000841658 653__ $$awireless control 000841658 653__ $$awireless response 000841658 655_0 $$aElectronic books 000841658 77608 $$iPrint version:$$z9781606501702 000841658 830_0 $$aManufacturing and engineering collection. 000841658 852__ $$bebk 000841658 85640 $$3ProQuest Ebook Central Academic Complete $$uhttps://univsouthin.idm.oclc.org/login?url=https://ebookcentral.proquest.com/lib/usiricelib-ebooks/detail.action?docID=1911737$$zOnline Access 000841658 909CO $$ooai:library.usi.edu:841658$$pGLOBAL_SET 000841658 980__ $$aBIB 000841658 980__ $$aEBOOK 000841658 982__ $$aEbook 000841658 983__ $$aOnline