000843695 000__ 04922cam\a2200541Ii\4500 000843695 001__ 843695 000843695 005__ 20230306144906.0 000843695 006__ m\\\\\o\\d\\\\\\\\ 000843695 007__ cr\cn\nnnunnun 000843695 008__ 180626s2018\\\\si\a\\\\o\\\\\000\0\eng\d 000843695 019__ $$a1041937825$$a1042352370$$a1043409574 000843695 020__ $$a9789811083488$$q(electronic book) 000843695 020__ $$a9811083487$$q(electronic book) 000843695 020__ $$z9789811083471 000843695 020__ $$z9811083479 000843695 0247_ $$a10.1007/978-981-10-8348-8$$2doi 000843695 035__ $$aSP(OCoLC)on1041930790 000843695 035__ $$aSP(OCoLC)1041930790$$z(OCoLC)1041937825$$z(OCoLC)1042352370$$z(OCoLC)1043409574 000843695 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dN$T$$dEBLCP$$dYDX$$dOCLCF$$dUAB 000843695 049__ $$aISEA 000843695 050_4 $$aTF537 000843695 08204 $$a625.1/5$$223 000843695 1001_ $$aLi, Dan,$$eauthor. 000843695 24510 $$aRail crack monitoring using acoustic emission technique /$$cDan Li. 000843695 264_1 $$aSingapore :$$bSpringer,$$c2018. 000843695 300__ $$a1 online resource (xxviii, 136 pages) :$$billustrations (some color). 000843695 336__ $$atext$$btxt$$2rdacontent 000843695 337__ $$acomputer$$bc$$2rdamedia 000843695 338__ $$aonline resource$$bcr$$2rdacarrier 000843695 4901_ $$aSpringer theses,$$x2190-5053 000843695 500__ $$a"Doctoral thesis accepted by the National University of Singapore, Singapore." 000843695 504__ $$aIncludes bibliographical references. 000843695 5050_ $$aIntro; Supervisor's Foreword; Parts of this thesis have been published in the following journal articles:Li, D. *, Kuang, K. S. C., Koh, C. G. (2017). Rail crack monitoring based on Tsallis synchrosqueezed wavelet entropy of acoustic emission signals: a field study. Structural Health Monitoring. Prepublished online December 4, 2017, DOI: 10.1177/1475921717742339.Li, D., Kuang, K. S. C. *, Koh, C. G. (2017). Fatigue crack sizing in rail steel using crack closure-induced acoustic emission waves. Measurement Science and Technol; Acknowledgements; Contents; Abbreviations; Nomenclature 000843695 5058_ $$aList of FiguresList of Tables; Summary; 1 Introduction; 1.1 Background; 1.2 Objectives and Scope of Research; 1.3 Research Significance; 1.4 Thesis Outline; References; 2 Literature Review; 2.1 Common Defects of Rail Track; 2.1.1 Surface Cracks; 2.1.2 Internal Cracks; 2.2 Current Rail Monitoring Techniques; 2.2.1 Acceleration-Based Technique; 2.2.2 Automated Visual Technique; 2.2.3 Ultrasonic Techniques; 2.2.4 Electromagnetic Techniques; 2.2.5 Magnetic Induction Technique; 2.3 AE Technique and Its Applications; 2.3.1 Introduction to AE Technique; 2.3.2 Characterization of AE Waves 000843695 5058_ $$a2.3.3 Relevant Applications of AE Technique2.4 State-of-Art of Rail Condition Monitoring Using AE; References; 3 Propagation Features and Source Location; 3.1 Introduction; 3.2 Experimental Procedure; 3.2.1 Pencil Lead Break (PLB); 3.2.2 Field PLB Test; 3.2.3 Field Train Pass-by Test; 3.2.4 AE Data Acquisition; 3.3 Time-Frequency Representation of AE Waves; 3.3.1 Continuous Wavelet Transform (CWT); 3.3.2 Optimal Mother Wavelet Selection; 3.3.3 Time-Frequency Characteristics of AE Waves; 3.4 Propagation Features of AE Waves; 3.4.1 Theory of Ultrasonic Propagation 000843695 5058_ $$a3.4.2 Attenuation of AE Waves in Rail Head3.4.3 Dispersion of AE Waves in Rail Head; 3.5 Source Location Methods; 3.5.1 Time-of-Arrival (TOA) Method; 3.5.2 Wavelet Transform-Based Modal Analysis Location (WTMAL) Method; 3.6 Hilbert Transform-Based Noise Cancellation Method; 3.7 Results and Discussion; 3.7.1 Influence of Operational Noise on Crack Detection; 3.7.2 Source Location Without Noise Using TOA Method; 3.7.3 Source Location Without Noise Using WTMAL Method; 3.7.4 Source Location with Noise Using WTMAL Method; 3.8 Concluding Remarks; References; 4 Sizing of Fatigue Cracks 000843695 5058_ $$a4.1 Introduction4.2 Experimental Procedure; 4.2.1 Rail Steel Specimens; 4.2.2 Fatigue Tests; 4.2.3 AE Data Acquisition; 4.2.4 Crack Length Calculation; 4.2.5 Crack Surface Observation; 4.3 AE Wave Classification; 4.3.1 Wavelet Power (WP)-Based Classification Index; 4.3.2 Threshold Determination for the Classification Index; 4.3.3 Frequency Bands Selection for the Classification Index; 4.4 Fatigue Crack Sizing Methods; 4.4.1 Traditional Method Based on CP-Induced AE Waves; 4.4.2 Novel Method Based on CC-Induced AE Waves; 4.4.3 Comparison of Crack Sizing Methods; 4.5 Results and Discussion 000843695 506__ $$aAccess limited to authorized users. 000843695 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed June 26, 2018). 000843695 650_0 $$aRailroad tracks$$xTesting. 000843695 650_0 $$aAcoustic emission testing. 000843695 77608 $$iPrint version: $$z9811083479$$z9789811083471$$w(OCoLC)1019642965 000843695 830_0 $$aSpringer theses,$$x2190-5053 000843695 852__ $$bebk 000843695 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-981-10-8348-8$$zOnline Access$$91397441.1 000843695 909CO $$ooai:library.usi.edu:843695$$pGLOBAL_SET 000843695 980__ $$aEBOOK 000843695 980__ $$aBIB 000843695 982__ $$aEbook 000843695 983__ $$aOnline 000843695 994__ $$a92$$bISE