Linked e-resources

Details

Intro; Supervisor's Foreword; Parts of this thesis have been published in the following journal articles:Y. Hu, H. Liu, Q. Ke and J. Wang, "Effects of nitrogen doping on supercapacitor performance of a mesoporous carbon electrode produced by a hydrothermal soft-templating process". Journal of Materials Chemistry A, 2 (2014) 11753-11758.Y. Hu and J. Wang, "MnOx nanosheets for improved electrochemical performances through bilayer nano-architecting". Journal of Power Sources, 286 (2015) 394-399.Y. Hu, C. Guan, G. Feng and J. Wa; Acknowledgements; Contents; List of Figures; List of Tables

Symbols1 Introduction; 1.1 Brief Overview of Supercapacitors; 1.2 What Makes a Good Supercapacitor Electrode Material; 1.3 Recent Advances and Challenges; 1.3.1 Advantages of Supercapacitors; 1.3.2 Challenges of Supercapacitors; 1.3.3 Asymmetric Supercapacitors; 1.3.4 Flexible Supercapacitors; 1.4 Electrode Materials for Supercapacitors; 1.4.1 Carbon Materials; 1.4.1.1 Activated Carbons (ACs); 1.4.1.2 Graphene; 1.4.1.3 Templated Mesoporous Carbon Materials (MCMs); 1.4.2 Conducting Polymers; 1.4.2.1 Polyaniline; 1.4.2.2 Polypyrrole; 1.4.3 Transition Metal Oxides and Their Hybrids

1.4.3.1 Manganese Oxides1.4.3.2 Manganese Oxides and Carbon-Based Hybrids; 1.4.3.3 Ruthenium Oxides; 1.4.3.4 Nickel Oxide/Hydroxide; 1.4.3.5 Iron Oxides; 1.5 Project Motivations and Designs; 1.6 Research Objectives; References; 2 Experimental Section; 2.1 Materials; 2.2 Materials Synthesis; 2.3 Characterizations; 2.3.1 Chemical and Composition Analysis; 2.3.2 Morphological Studies; 2.3.3 Electrochemical Measurements; 3 Nitrogen Doping of Mesoporous Carbon Materials; 3.1 Introduction; 3.2 Synthesis Methods; 3.3 Results and Discussion

3.3.1 Microstructure and Chemical Composition Characterizations3.3.2 Electrochemical Characterizations; 3.4 Remarks; References; 4 Improving the Surface Area and Loading Mass of MnOx Based Electrode Materials; 4.1 Introduction; 4.2 Synthesis Methods and Electrochemical Characterizations; 4.3 Results and Discussion; 4.3.1 Characterizations of the First Layer of MnO2 Nanosheet; 4.3.2 Bilayer Integration and Characterizations; 4.4 Remarks; References; 5 Mn3O4 Nanomaterials with Controllable Morphology and Particle Sizes; 5.1 Introduction; 5.2 Synthesis Methods; 5.3 Results and Discussions

5.3.1 Temperature of Hydrothermal Growth5.3.2 Tuning of Particle Sizes Through CTAB; 5.3.3 Electrochemical Characterization of Mn3O4 Nanoparticles/rGO Hybrid; 5.4 Remarks; References; 6 Optimized Hybrid Mn3O4 Nanofiber/rGO Paper for High Performance Flexible ASCs; 6.1 Introduction; 6.2 Synthesis Methods; 6.3 Results and Discussion; 6.3.1 Electrochemical Reduction of Hybrid Mn3O4/GO Papers; 6.3.2 Characterizations of the MG Papers; 6.3.3 Electrochemical Performance of MG//rGO ASCs; 6.3.3.1 Using Aqueous Electrolyte; 6.3.3.2 Using Ionic Liquid Electrolyte; 6.4 Remarks; References

Browse Subjects

Show more subjects...

Statistics

from
to
Export