Linked e-resources

Details

Intro; Preface; Acknowledgements; Contents; Contributors; Part I Observational Techniques; 1 Observational Techniques with Transiting Exoplanetary Atmospheres; 1.1 Background and History of Exoplanet Atmosphere Observations; 1.1.1 A Few Early Results; 1.1.2 Transit Observations; 1.1.3 Eclipse Observations; 1.1.4 Phase Curve Observations; 1.1.5 Accessible Transmission Spectra Exoplanets; 1.1.6 Exoplanets with Accessible Secondary Eclipses; 1.1.7 Accessing the Atmospheres of Small Exoplanets; 1.2 Exoplanet Atmosphere Science Topics; 1.2.1 Planet Formation; 1.2.2 Atmospheric Physics

1.2.3 Clouds and Hazes1.3 Analysing Transmission Spectral Data; 1.3.1 Pre-observation Steps; 1.3.2 Initial Calibration Overview; 1.3.3 Pre-light Curve Fitting; 1.3.4 Light Curve Fitting; 1.4 Interpreting a Transmission Spectrum; 1.4.1 Analytic Transmission Spectrum Derivation; 1.4.2 Analytic Transmission Spectrum Applications; 1.4.3 Transmission Spectrum Degeneracies; References; Part II Theoretical Models; 2 Modeling Exoplanetary Atmospheres: An Overview; 2.1 Why Study Atmospheres?; 2.2 Energy Balance and Albedos; 2.2.1 Geometric Albedo; 2.2.2 Spherical Albedo; 2.2.3 Bond Albedo

2.2.4 Temperatures of Interest2.2.5 Absorption and Emission of Flux; 2.3 Overview of Pressure-Temperature Profiles and Absorption Features; 2.3.1 Pressure-Temperature Profiles; 2.4 Interpreting Spectra via Absorption Features; 2.5 Stepping Through Physical Effects; 2.5.1 Surface Gravity; 2.5.2 Metallicity; 2.5.3 Carbon-to-Oxygen Ratio; 2.5.4 Incident Flux; 2.5.5 Outer Boundary Condition: Parent Star Spectral Type; 2.5.6 Inner Boundary Condition: Flux from the Interior; 2.5.7 Role of Atmospheric Thickness; 2.5.8 Effects of Clouds; 2.6 Retrieval; 2.6.1 Forward Model

2.6.2 Bayesian Estimator/Model Selection2.6.3 An Example: Cool T-Type Brown Dwarfs; 2.7 Simplified Atmospheric Dynamics; 2.8 Connection with Formation Models; 2.9 Perspective; References; Part III Molecular Spectroscopy; 3 Molecular Spectroscopy for Exoplanets; 3.1 General Introduction; 3.1.1 The Basics; 3.1.2 Spectroscopic Regions and Units; 3.1.3 What Does One Learn from an Astronomical Line Spectrum?; 3.2 Atomic Spectra; 3.2.1 Atomic Hydrogen; 3.2.2 Helium Spectra; 3.2.3 Complex Atoms; 3.2.4 Atoms (and Molecules) in Magnetic Fields; 3.3 Molecular Motions; 3.4 Rotational Spectra

3.4.1 Linear Molecules3.4.2 Spherical Tops; 3.4.3 Symmetric Tops; 3.4.4 Asymmetric Tops; 3.4.5 Molecular Hydrogen; 3.4.6 Isotopologues; 3.4.7 Temperature Effects; 3.4.8 Data Sources; 3.4.9 Other Angular Momentum; 3.5 Vibrational Spectra; 3.5.1 Diatomic Molecules; 3.5.2 Polyatomic Molecules; 3.5.3 Isotopologues; 3.5.4 Molecular Hydrogen; 3.5.5 Temperature Effects; 3.6 Electronic Spectra; 3.6.1 Electronc State Notation; 3.6.2 Selection Rules; 3.6.3 Band Structure; 3.6.4 Duo; 3.6.5 Molecular Hydrogen; 3.7 Line Profiles; 3.8 Spectroscopic Database; 3.8.1 Ground Rules; 3.8.2 Atomic Data Sources

Browse Subjects

Show more subjects...

Statistics

from
to
Export