000844077 000__ 04680cam\a2200529Ii\4500 000844077 001__ 844077 000844077 005__ 20230306144823.0 000844077 006__ m\\\\\o\\d\\\\\\\\ 000844077 007__ cr\cn\nnnunnun 000844077 008__ 180711t20182018sz\\\\\\ob\\\\000\0\eng\d 000844077 019__ $$a1043882843 000844077 020__ $$a9783319917825$$q(electronic book) 000844077 020__ $$a331991782X$$q(electronic book) 000844077 020__ $$z9783319917818 000844077 020__ $$z3319917811 000844077 035__ $$aSP(OCoLC)on1043831002 000844077 035__ $$aSP(OCoLC)1043831002$$z(OCoLC)1043882843 000844077 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dGW5XE$$dEBLCP$$dYDX$$dOCLCF 000844077 049__ $$aISEA 000844077 050_4 $$aQC173.7 000844077 08204 $$a530.14$$223 000844077 1001_ $$aRakotomanana, Lalao,$$eauthor. 000844077 24510 $$aCovariance and gauge invariance in Continuum Physics :$$bapplication to mechanics, gravitation, and electromagnetism /$$cLalaonirina R. Rakotomanana. 000844077 264_1 $$aCham :$$bBirkhäuser,$$c[2018] 000844077 264_4 $$c©2018 000844077 300__ $$a1 online resource. 000844077 336__ $$atext$$btxt$$2rdacontent 000844077 337__ $$acomputer$$bc$$2rdamedia 000844077 338__ $$aonline resource$$bcr$$2rdacarrier 000844077 4901_ $$aProgress in mathematical physics,$$x1544-9998 ;$$vvolume 73 000844077 504__ $$aIncludes bibliographical references and index. 000844077 5050_ $$aIntro; Preface; Contents; 1 General Introduction; 1.1 Classical Physics, Lagrangian, and Invariance; 1.2 General Covariance, Gauge Invariance; 1.3 Objectives and Planning; 2 Basic Concepts on Manifolds, Spacetimes, and Calculusof Variations; 2.1 Introduction; 2.2 Space-Time Background; 2.2.1 Basics on Flat Minkowski Spacetime; 2.2.2 Twisted and Curved Spacetimes; 2.3 Manifolds, Tensor Fields, and Connections; 2.3.1 Coordinate System, and Group of Transformations; 2.3.1.1 Manifolds, Tangent Space, Cotangent Space; 2.3.1.2 Change of Coordinate System 000844077 5058_ $$a2.3.1.3 Examples of Group of Transformations2.3.1.4 Lorentz Invariance; 2.3.2 Elements on Spacetime and Invariance for Relativity; 2.3.2.1 Forms, Tensors and (Pseudo)-Riemannian Manifolds; 2.3.2.2 Hilbert's Causality Principle; 2.3.2.3 Euclidean Spacetime and Isometries; 2.3.2.4 Minkowski Spacetime and Lorentz Transformations; 2.3.2.5 Global Poincaré Transformations; 2.3.3 Volume-Form; 2.3.4 Affine Connection; 2.3.4.1 Affine Connection, Affinely Connected Manifold; 2.3.4.2 Example: Spherical Coordinate System; 2.3.4.3 Example: Elliptic-Hyperbolic Coordinate System 000844077 5058_ $$a2.3.4.4 Practical Formula for Covariant Derivative2.3.4.5 Torsion and Curvature; 2.3.4.6 Newtonian Spacetime; 2.3.4.7 Levi-Civita Connection; 2.3.4.8 Normal Coordinate System and Inertial Frame; 2.3.5 Tetrads and Affine Connection: Continuum Transformations; 2.3.5.1 Transformation of a Continuum; 2.3.5.2 Holonomic Mapping; 2.3.5.3 Nonholonomic Mapping and Torsion e.g. (2000); 2.3.5.4 Nonholonomic Transformation and Curvature; 2.3.5.5 Torsion, Curvature, and Smoothness of Tensor Fields; 2.4 Invariance for Lagrangian and Euler-Lagrange Equations 000844077 5058_ $$a2.4.1 Covariant Formulation of Classical Mechanics of a Particle2.4.2 Basic Elements for Calculus of Variations; 2.4.3 Extended Euler-Lagrange Equations; 2.5 Simple Examples in Continuum and Relativistic Mechanics; 2.5.1 Particles in a Minkowski Spacetime; 2.5.2 Some Continua Examples; 2.5.2.1 Energy-Momentum Tensor; 2.5.2.2 Dust in Relativistic Mechanics; 2.5.2.3 Perfect Fluids in Relativistic Mechanics; 2.5.2.4 Strain Gradient Continuum; 3 Covariance of Lagrangian Density Function; 3.1 Introduction; 3.2 Some Basic Theorems; 3.2.1 Theorem of Cartan; 3.2.2 Theorem of lovelockarma 000844077 5058_ $$a3.2.3 Theorem of Quotient3.3 Invariance with Respect to the Metric; 3.3.1 Transformation Rules for the Metric and Its Derivatives; 3.3.2 Introduction of Dual Variables; 3.3.3 Theorem; 3.4 Invariance with Respect to the Connection; 3.4.1 Preliminary; 3.4.2 Application: Covariance of L; 3.4.3 Summary for Lagrangian Covariance; 3.4.4 Covariance of Nonlinear Elastic Continuum; 3.4.4.1 Covariance of Strain Energy Density; 3.4.4.2 Examples of Nonlinear Elastic Material Models; 4 Gauge Invariance for Gravitation and Gradient Continuum; 4.1 Introduction to Gauge Invariance 000844077 506__ $$aAccess limited to authorized users. 000844077 588__ $$aOnline resource; title from PDF title page (viewed July 12, 2018). 000844077 650_0 $$aField theory (Physics) 000844077 650_0 $$aAnalysis of covariance. 000844077 650_0 $$aGauge invariance. 000844077 77608 $$iPrint version: $$z3319917811$$z9783319917818$$w(OCoLC)1031456141 000844077 830_0 $$aProgress in mathematical physics ;$$vv. 73. 000844077 852__ $$bebk 000844077 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-91782-5$$zOnline Access$$91397441.1 000844077 909CO $$ooai:library.usi.edu:844077$$pGLOBAL_SET 000844077 980__ $$aEBOOK 000844077 980__ $$aBIB 000844077 982__ $$aEbook 000844077 983__ $$aOnline 000844077 994__ $$a92$$bISE