Linked e-resources
Details
Table of Contents
Intro; Preface; Contents; 1 Introduction to Nanoseparation; Abstract; 1.1 Challenges for Nanomaterial Synthesis-Monodispersity; 1.2 Common Techniques Used for Separation of Nanostructures; 1.2.1 Membrane Flirtation; 1.2.2 Chromatography; 1.2.3 Electrophoresis; 1.2.4 Magnetic Field; 1.2.5 Centrifugation; References; 2 Basic Concepts of Density Gradient Ultracentrifugation; Abstract; 2.1 Revolution of Density Gradient Ultracentrifugation; 2.2 Differential Centrifugation; 2.2.1 Introduction; 2.2.2 Basic Principle; 2.2.3 Applicable Conditions; 2.2.4 Basic Calculation; 2.3 Rate-Zonal Separation
2.3.1 Introduction2.3.2 Basic Principle; 2.3.3 Considerations; 2.3.4 Applicable Conditions: High Density Nanostructures; 2.4 Isopycnic Separation; 2.4.1 Introduction; 2.4.2 Basic Principle; 2.4.3 Characteristics; 2.4.4 Applicable Conditions: Low-Density Nanostructures; References; 3 Density Gradient Ultracentrifugation Technique; Abstract; 3.1 Choice of Gradient Media; 3.1.1 Gradient Media; 3.1.2 Commonly Applied Gradient Media; 3.1.2.1 Aqueous Gradient Media; 3.1.2.2 Organic Gradient Media; 3.2 Choice of Density Gradient; 3.2.1 Step Gradient; 3.2.2 Continuous Gradient
3.3 Choice of a Rotor Type3.3.1 Classification of Centrifuge Rotors; 3.3.1.1 Fixed-Angle Rotors; 3.3.1.2 Swing-Out Rotors; 3.3.1.3 Zonal Rotors; 3.3.1.4 Vertical Rotors; 3.3.2 The Selection Principle of the Rotors; 3.3.3 The Relationship Between the Type of the Rotor and Centrifugal Force; 3.3.3.1 Centrifugal Force; 3.3.3.2 Relative Centrifugal Force (RCF); 3.3.3.3 The Selection of Speed (N) and Relative Centrifugal Force (RCF); 3.4 Choice of an Appropriate Separation Speed and Time; 3.4.1 Differential Centrifugation; 3.4.2 Isopycnic Centrifugation; 3.4.3 Rate-Zonal Centrifugation
Appendix: MATLAB Program for the Computational Mathematical Optimization of Spherical NanoparticlesReferences; 5 Density Gradient Ultracentrifugation of Colloidal Nanostructures; Abstract; 5.1 Separation of Zero-Dimensional Nanostructures; 5.2 Separation of One-Dimensional Nanostructures; 5.3 Separation of Two-Dimensional Nanostructures; 5.4 Separation of Assemblies/Clusters; References; 6 Application of Nanoseparation in Reaction Mechanism Analysis; Abstract; 6.1 The Concept of "lab in a tube"; 6.2 Size-Property Investigation Through DGUC Nanoseparation
2.3.1 Introduction2.3.2 Basic Principle; 2.3.3 Considerations; 2.3.4 Applicable Conditions: High Density Nanostructures; 2.4 Isopycnic Separation; 2.4.1 Introduction; 2.4.2 Basic Principle; 2.4.3 Characteristics; 2.4.4 Applicable Conditions: Low-Density Nanostructures; References; 3 Density Gradient Ultracentrifugation Technique; Abstract; 3.1 Choice of Gradient Media; 3.1.1 Gradient Media; 3.1.2 Commonly Applied Gradient Media; 3.1.2.1 Aqueous Gradient Media; 3.1.2.2 Organic Gradient Media; 3.2 Choice of Density Gradient; 3.2.1 Step Gradient; 3.2.2 Continuous Gradient
3.3 Choice of a Rotor Type3.3.1 Classification of Centrifuge Rotors; 3.3.1.1 Fixed-Angle Rotors; 3.3.1.2 Swing-Out Rotors; 3.3.1.3 Zonal Rotors; 3.3.1.4 Vertical Rotors; 3.3.2 The Selection Principle of the Rotors; 3.3.3 The Relationship Between the Type of the Rotor and Centrifugal Force; 3.3.3.1 Centrifugal Force; 3.3.3.2 Relative Centrifugal Force (RCF); 3.3.3.3 The Selection of Speed (N) and Relative Centrifugal Force (RCF); 3.4 Choice of an Appropriate Separation Speed and Time; 3.4.1 Differential Centrifugation; 3.4.2 Isopycnic Centrifugation; 3.4.3 Rate-Zonal Centrifugation
Appendix: MATLAB Program for the Computational Mathematical Optimization of Spherical NanoparticlesReferences; 5 Density Gradient Ultracentrifugation of Colloidal Nanostructures; Abstract; 5.1 Separation of Zero-Dimensional Nanostructures; 5.2 Separation of One-Dimensional Nanostructures; 5.3 Separation of Two-Dimensional Nanostructures; 5.4 Separation of Assemblies/Clusters; References; 6 Application of Nanoseparation in Reaction Mechanism Analysis; Abstract; 6.1 The Concept of "lab in a tube"; 6.2 Size-Property Investigation Through DGUC Nanoseparation