000844287 000__ 04916cam\a2200529Ii\4500 000844287 001__ 844287 000844287 005__ 20230306144834.0 000844287 006__ m\\\\\o\\d\\\\\\\\ 000844287 007__ cr\cn\nnnunnun 000844287 008__ 180724s2018\\\\xx\a\\\\o\\\\\100\0\eng\d 000844287 019__ $$a1046105514 000844287 020__ $$a9783319927268$$q(electronic book) 000844287 020__ $$a3319927264$$q(electronic book) 000844287 020__ $$z9783319927251 000844287 020__ $$z3319927256 000844287 035__ $$aSP(OCoLC)on1045629762 000844287 035__ $$aSP(OCoLC)1045629762$$z(OCoLC)1046105514 000844287 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dGW5XE$$dN$T$$dEBLCP$$dYDX 000844287 049__ $$aISEA 000844287 050_4 $$aQC793.5.B62 000844287 08204 $$a539.7/21$$223 000844287 1112_ $$aInternational Workshop on Microwave Cavities and Detectors for Axion Research$$n(2nd :$$d2017 :$$cLivermore, Calif.) 000844287 24510 $$aMicrowave cavities and detectors for axion research :$$bproceedings of the 2nd International Workshop /$$cGianpaolo Carosi, Gray Rybka, Karl van Bibber, editor. 000844287 264_1 $$aCham, Switzerland :$$bSpringer,$$c2018. 000844287 300__ $$a1 online resource (xi, 161 pages) :$$billustrations. 000844287 336__ $$atext$$btxt$$2rdacontent 000844287 337__ $$acomputer$$bc$$2rdamedia 000844287 338__ $$aonline resource$$bcr$$2rdacarrier 000844287 4901_ $$aSpringer proceedings in physics ;$$vvolume 211 000844287 5050_ $$aIntro; Preface; Contents; Contributors; 1 Introduction to the Numerical Design of RF-Structures with Special Consideration for Axion Detector Design: A Tutorial; 1.1 Design Basics and Motivation for a Numerical Approach; 1.2 Numerical Methods; 1.2.1 Reduction of Effort Strategy; 1.2.2 Discretization of the Calculation Domain; 1.2.3 Finite Difference Vs. Finite Element Discretization; 1.2.4 Other Approaches; 1.3 Software and Design Concepts; 1.3.1 2D Software Tools; 1.3.2 3D Software Tools; 1.3.3 RF Structure Design Concepts; 1.3.3.1 Structure Description; 1.3.3.2 Material Properties 000844287 5058_ $$a1.3.3.3 Boundary Conditions1.3.3.4 Solver and Meshing Controls; 1.3.3.5 Other Relevant Features of Software Tools; 1.4 Tip and Tricks; 1.5 Summary; References; 2 Symmetry Breaking in Haloscope Microwave Cavities; 2.1 Background; 2.2 Microwave Cavity Theory; 2.3 Numerical Analysis; 2.4 Conclusion; References; 3 Pound Cavity Tuning; 3.1 Introduction; 3.2 Block Diagram; 3.3 Transmission and Reflection Spectra; 3.4 Error Signals; 3.5 Locking Multiple Cavities; References; 4 Modification of a Commercial Phase Shifter for Cryogenic Applications; 4.1 Introduction; 4.2 Modifications; 4.3 Modeling 000844287 5058_ $$a4.4 ConclusionsReferences; 5 Application of the Bead Perturbation Technique to a Study of a Tunable 5GHz Annular Cavity; 5.1 Background; 5.1.1 Introduction; 5.1.2 Electromagnetic Properties of the Resonator; 5.1.3 Bead Perturbation Technique; 5.2 Mode Mixing; 5.3 Grid Measurements; 5.4 Conclusion and Future Work; References; 6 Novel Resonators for Axion Haloscopes; 6.1 Haloscope Resonant Design; 6.2 Lumped 3D LC Resonators; 6.3 Dielectric Resonators; 6.3.1 Dielectric Disk Resonator; 6.3.2 Dielectric Ring Resonator; 6.4 Meta-materials; References; 7 Photonic Band Gap Cavities for a Future ADMX 000844287 5058_ $$a7.1 Axions7.2 Haloscopes; 7.3 Photonic Band Gap Cavities; References; 8 First Test of a Photonic Band Gap Structure for HAYSTAC; 8.1 Introduction; 8.2 Background and Motivation; 8.2.1 Current HAYSTAC Cavity; 8.2.2 Mode Crossings; 8.3 Photonic Band Gap Structures; 8.3.1 Resonators; 8.3.2 Application to HAYSTAC; 8.4 Prototype Design; 8.4.1 Lattice; 8.4.2 Tuning Mechanism; 8.4.3 First Tests; 8.5 Discussion and Future Work; References; 9 Hybrid Cavities for Axion Detectors; 9.1 Introduction; 9.2 Microwave Properties of Superconductors; 9.3 Calculations of Q 000844287 5058_ $$a9.4 Results for the Sidewall Qs for Superconductor on Copper9.5 Sidewall Qs with Thick Spacer Between Superconductor and Copper; 9.6 Q Including the Endcaps; 9.7 Conclusions; References; 10 An Introduction to Superconducting Qubits and Circuit Quantum Electrodynamics; 10.1 Introduction; 10.2 Superconducting Qubit Circuit Models; 10.2.1 Non-linearity in Superconducting Qubits; 10.2.2 Classical Circuit Models of Josephson Junctions; 10.2.3 Circuit Quantum Electrodynamics; 10.2.3.1 Quantizing the LC Oscillator; 10.2.3.2 Black Box Circuit Quantization; 10.3 Summary; References 000844287 506__ $$aAccess limited to authorized users. 000844287 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed July 26, 2018). 000844287 650_0 $$aAxions$$vCongresses. 000844287 650_0 $$aMicrowave detectors$$vCongresses. 000844287 7001_ $$aCarosi, Gianpaolo,$$eeditor. 000844287 7001_ $$aRybka, Gray,$$eeditor. 000844287 7001_ $$aBibber, Karl van,$$eeditor. 000844287 77608 $$iPrint version: $$z3319927256$$z9783319927251$$w(OCoLC)1033530793 000844287 830_0 $$aSpringer proceedings in physics ;$$vv. 211. 000844287 852__ $$bebk 000844287 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-92726-8$$zOnline Access$$91397441.1 000844287 909CO $$ooai:library.usi.edu:844287$$pGLOBAL_SET 000844287 980__ $$aEBOOK 000844287 980__ $$aBIB 000844287 982__ $$aEbook 000844287 983__ $$aOnline 000844287 994__ $$a92$$bISE