000844334 000__ 04897cam\a2200517Ii\4500 000844334 001__ 844334 000844334 005__ 20230306144836.0 000844334 006__ m\\\\\o\\d\\\\\\\\ 000844334 007__ cr\cn\nnnunnun 000844334 008__ 180725s2018\\\\sz\\\\\\o\\\\\100\0\eng\d 000844334 019__ $$a1046552806 000844334 020__ $$a9783319929880$$q(electronic book) 000844334 020__ $$a3319929887$$q(electronic book) 000844334 020__ $$z9783319929873 000844334 020__ $$z3319929879 000844334 035__ $$aSP(OCoLC)on1045796871 000844334 035__ $$aSP(OCoLC)1045796871$$z(OCoLC)1046552806 000844334 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dGW5XE$$dN$T$$dEBLCP$$dYDX 000844334 049__ $$aISEA 000844334 050_4 $$aQA269 000844334 08204 $$a519.3$$223 000844334 1112_ $$aInternational Conference "Game Theory and Management"$$n(11th :$$d2017 :$$cSaint Petersburg, Russia) 000844334 24510 $$aFrontiers of dynamic games :$$bgame theory and management, St. Petersburg, 2017 /$$cLeon A. Petrosyan, Vladimir V. Mazalov, Nikolay A. Zenkevich, editors. 000844334 264_1 $$aCham, Switzerland :$$bBirkhäuser,$$c[2018] 000844334 300__ $$a1 online resource. 000844334 336__ $$atext$$btxt$$2rdacontent 000844334 337__ $$acomputer$$bc$$2rdamedia 000844334 338__ $$aonline resource$$bcr$$2rdacarrier 000844334 4901_ $$aStatic & dynamic game theory: Foundations & Applications,$$x2363-8516 000844334 5050_ $$aIntro; Preface; Contents; Contributors; 1 Countervailing Power with Large and Small Retailers; 1.1 Introduction; 1.2 The Model; 1.3 Equilibrium; 1.4 The Effects of Concentration and Bargaining Power on Retail Prices; 1.5 Conclusion; Appendix; Derivation of the Reaction Function of the Large Retailer qm(Q-m); Derivation of Bargaining Outcome (1.11) and (1.12); References; 2 Dynamic Voluntary Provision of Public Goods: The Recursive Nash Bargaining Solution; 2.1 Introduction; 2.2 Problem Statement; 2.3 Solution Concepts; 2.3.1 Collusive Solution; 2.3.2 Noncooperative Equilibrium 000844334 5058_ $$a2.3.3 Bargaining Solution2.4 Conclusion; References; 3 Altruistic, Aggressive and Paradoxical Types of Behavior in a Differential Two-Person Game; 3.1 Introduction; 3.2 Some Results from the Theory of Non-antagonistic Positional Differential Games (NPDG) of Two Persons; 3.3 A Non-antagonistic Positional Differential Games with Behavior Types (NPDGwBT): BT-Solution; 3.4 Example; 3.5 Conclusion; References; 4 Learning in a Game of Strategic Experimentation with Three-Armed Exponential Bandits; 4.1 Introduction; 4.2 Model Setup; 4.3 Complete Learning; 4.4 Equilibrium Payoff Functions 000844334 5058_ $$a4.4.1 Low Stakes4.4.2 Intermediate Stakes; 4.5 Conclusion; 4.6 Proofs; 4.6.1 Proof of Lemma 4.1; 4.6.2 Proof of Proposition 4.2; 4.6.3 Proof of Proposition 4.3; References; 5 Solution for a System of Hamilton-Jacobi Equations of Special Type and a Link with Nash Equilibrium; 5.1 Introduction; 5.2 Bilevel Optimal Control Problem; 5.3 The Solution of the System of the Hamilton-Jacobi Equations; 5.4 Design of Nash Equilibrium; 5.5 Example; References; 6 The Impact of Discounted Indices on Equilibrium Strategies of Players in Dynamical Bimatrix Games; 6.1 Introduction; 6.2 Model Dynamics 000844334 5058_ $$a6.3 Local Payoff Functions6.4 Nash Equilibrium in the Differential Game with Discounted Functionals; 6.5 Auxiliary Zero-Sum Games; 6.6 Construction of the Dynamical Nash Equilibrium; 6.7 Two-Step Optimal Control Problems; 6.8 The Solution of the Two-Step Optimal Control Problem; 6.9 Guaranteed Values of Discounted Payoffs; 6.10 Equilibrium Trajectories in the Game with Discounted Payoffs; References; 7 On Control Reconstruction Problems for Dynamic Systems Linear in Controls; 7.1 Introduction; 7.2 Dynamics; 7.3 Input Data; 7.4 Hypotheses; 7.5 Problem Statement 000844334 5058_ $$a7.6 A Solution of the Inverse Problem7.6.1 Auxiliary Problem; 7.6.2 Necessary Optimality Conditions in the AVP; 7.6.3 A Solution of the Reconstruction Problem; 7.6.4 Convergence of the Solution; 7.7 Remarks on the Suggested Method; 7.8 Example; References; 8 Evolution of Risk-Statuses in One Model of Tax Control; 8.1 Introduction; 8.2 Static Model of Tax Audit; 8.3 Model with Different Risk-Statuses; 8.4 The Evolutionary Model on the Network; 8.4.1 The Model Based on the Markov Process on the Network; 8.4.2 The Model Based on the Proportional Imitation Rule; 8.5 Numerical Simulations 000844334 506__ $$aAccess limited to authorized users. 000844334 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed July 27, 2018). 000844334 650_0 $$aGame theory$$vCongresses. 000844334 7001_ $$aPetrosi͡an, L. A.$$q(Leon Aganesovich),$$eeditor. 000844334 7001_ $$aMazalov, V. V.$$q(Vladimir Viktorovich),$$eeditor. 000844334 7001_ $$aZenkevich, N. A.$$q(Nikolaĭ Anatolʹevich),$$eeditor. 000844334 77608 $$iPrint version: $$z3319929879$$z9783319929873$$w(OCoLC)1034600454 000844334 830_0 $$aStatic & dynamic game theory. 000844334 852__ $$bebk 000844334 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-92988-0$$zOnline Access$$91397441.1 000844334 909CO $$ooai:library.usi.edu:844334$$pGLOBAL_SET 000844334 980__ $$aEBOOK 000844334 980__ $$aBIB 000844334 982__ $$aEbook 000844334 983__ $$aOnline 000844334 994__ $$a92$$bISE