000845566 000__ 04394cam\a2200505Ii\4500 000845566 001__ 845566 000845566 005__ 20230306144856.0 000845566 006__ m\\\\\o\\d\\\\\\\\ 000845566 007__ cr\cn\nnnunnun 000845566 008__ 180814s2018\\\\sz\\\\\\o\\\\\000\0\eng\d 000845566 019__ $$a1048940557$$a1049789872$$a1049819470 000845566 020__ $$a9783319935010$$q(electronic book) 000845566 020__ $$a3319935011$$q(electronic book) 000845566 020__ $$z9783319934990 000845566 020__ $$z3319934996 000845566 035__ $$aSP(OCoLC)on1048428873 000845566 035__ $$aSP(OCoLC)1048428873$$z(OCoLC)1048940557$$z(OCoLC)1049789872$$z(OCoLC)1049819470 000845566 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dGW5XE$$dYDX$$dEBLCP$$dOCLCF$$dFIE$$dUAB 000845566 049__ $$aISEA 000845566 050_4 $$aQA9.64 000845566 066__ $$c(S 000845566 08204 $$a511.3/223$$223 000845566 1001_ $$aCho, Yeol Je,$$eauthor. 000845566 24510 $$aFuzzy operator theory in mathematical analysis /$$cYeol Je Cho, Themistocles M. Rassias, Reza Saadati. 000845566 264_1 $$aCham :$$bSpringer,$$c2018. 000845566 300__ $$a1 online resource 000845566 336__ $$atext$$btxt$$2rdacontent 000845566 337__ $$acomputer$$bc$$2rdamedia 000845566 338__ $$aonline resource$$bcr$$2rdacarrier 000845566 5050_ $$aIntro; Preface; Acknowledgments; Contents; Acronyms; 1 Preliminaries; 1.1 Triangular Norms; 1.2 Fuzzy Sets; 1.3 Triangular Norms on Lattices; 2 Fuzzy Normed Spaces and Fuzzy Metric Spaces; 2.1 Fuzzy Normed Spaces; 2.2 Fuzzy Topological Structures; 2.3 Non-Archimedean Fuzzy Normed Spaces; 2.4 Intuitionistic Fuzzy Inner Product Spaces; 2.4.1 Basic Properties and Results; 2.4.2 Orthogonality; 3 Further Properties of Fuzzy Banach Spaces; 3.1 Finite Dimensional Fuzzy Banach Spaces; 3.2 Fuzzy Quotient Spaces; 3.3 Linear Operators; 3.3.1 Bounded and Continuous Linear Operators 000845566 5058_ $$a3.4 Fuzzy Compact Operators3.4.1 Fuzzy Norms of Operators; 3.4.2 Fuzzy Operator Spaces; 3.5 Compact Operators; 4 Fundamental Theorems in Fuzzy Normed Spaces; 4.1 Open Mapping Theorem; 4.2 Closed Graph Theorem; 5 Fixed Point Theorems in Fuzzy Metric Spaces; 5.1 Fixed Point Theorems for Weak Compatible Mappings; 5.2 R-Weakly Commuting Mappings in Intuitionistic Fuzzy Metric Spaces; 5.3 Common Fixed Point Theorems for Six Mappings in Three Fuzzy Metric Spaces; 5.4 Jungck's Theorem in L-Fuzzy Metric Spaces; 5.5 Hyper L-Fuzzy Metric Spaces 000845566 5058_ $$a5.5.1 Banach's Fixed Point Theorem in MHL-Fuzzy Metric Spaces5.5.2 Kannan's Fixed Point Theorem in MHL-Fuzzy Metric Spaces; 5.6 Applications of Fixed Point Theorems in Intuitionistic Fuzzy Quasi-Metric Spaces; 5.6.1 Banach's Fixed Point Theorem in Intuitionistic Fuzzy Quasi-Metric Spaces; 5.6.2 G-Bicompleteness in Non-Archimedean Intuitionistic Fuzzy Quasi-Metric Spaces; 5.6.3 Applications to the Domain of Words; 5.7 Gauge Functions and Fixed Point Theorems; 5.8 Common Point Theorems in Fuzzy Metric Spaces Using the CLRg-Property; 5.8.1 Auxiliary Results 000845566 506__ $$aAccess limited to authorized users. 000845566 520__ $$aThis self-contained monograph presents an overview of fuzzy operator theory in mathematical analysis. Concepts, principles, methods, techniques, and applications of fuzzy operator theory are unified in this book to provide an introduction to graduate students and researchers in mathematics, applied sciences, physics, engineering, optimization, and operations research. New approaches to fuzzy operator theory and fixed point theory with applications to fuzzy metric spaces, fuzzy normed spaces, partially ordered fuzzy metric spaces, fuzzy normed algebras, and non-Archimedean fuzzy metric spaces are presented. Surveys are provided on: Basic theory of fuzzy metric and normed spaces and its topology, fuzzy normed and Banach spaces, linear operators, fundamental theorems (open mapping and closed graph), applications of contractions and fixed point theory, approximation theory and best proximity theory, fuzzy metric type space, topology and applications.--$$cProvided by publisher. 000845566 588__ $$aOnline resource; title from PDF title page (viewed August 15, 2018) 000845566 650_0 $$aFuzzy logic. 000845566 650_0 $$aOperator theory. 000845566 650_0 $$aMathematical analysis. 000845566 7001_ $$aRassias, Themistocles M.,$$d1951-$$eauthor. 000845566 7001_ $$aSaadati, Reza,$$eauthor. 000845566 77608 $$iPrint version: $$z3319934996$$z9783319934990$$w(OCoLC)1035512330 000845566 852__ $$bebk 000845566 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-93501-0$$zOnline Access$$91397441.1 000845566 909CO $$ooai:library.usi.edu:845566$$pGLOBAL_SET 000845566 980__ $$aEBOOK 000845566 980__ $$aBIB 000845566 982__ $$aEbook 000845566 983__ $$aOnline 000845566 994__ $$a92$$bISE