Linked e-resources
Details
Table of Contents
Intro; Contents; 1 Tensile Behavior of Ceramic-Matrix Composites; 1.1 Introduction; 1.2 Unidirectional Ceramic-Matrix Composites; 1.2.1 Stress Analysis; 1.2.2 Damage Models; 1.2.2.1 Matrix First Cracking; 1.2.2.2 Matrix Multicracking; 1.2.2.3 Interface Debonding; 1.2.2.4 Fibers Failure; 1.2.2.5 Stress-Strain Relationship; 1.2.3 Results and Discussions; 1.2.3.1 Effect of Matrix Weibull Modulus; 1.2.3.2 Effect of Matrix Cracking Characteristic Stress; 1.2.3.3 Effect of Fiber/Matrix Interface Shear Stress; 1.2.3.4 Effect of Fiber/Matrix Interface Debonded Energy
1.2.3.5 Effect of Fiber Weibull Modulus1.2.3.6 Effect of Fiber Characteristic Strength; 1.2.4 Experimental Comparisons; 1.2.4.1 SiC/CAS Composites; 1.2.4.2 SiC/CAS-II Composite; 1.2.4.3 SiC/Borosilicate Composite; 1.2.4.4 SiC/1723 Composite; 1.3 Cross-Ply and 2D Woven Ceramic-Matrix Composites; 1.3.1 Stress Analysis; 1.3.2 Damage Models; 1.3.2.1 Transverse Multicracking; 1.3.2.2 Matrix Multicracking; 1.3.2.3 Interface Debonding; 1.3.2.4 Fiber Failure; 1.3.2.5 Stress-Strain Relationship; 1.3.3 Results and Discussions; 1.3.3.1 Effect of Transverse Fracture Energy
1.3.3.2 Effect of Fiber Weibull Modulus1.3.4 Experimental Comparisons; 1.3.4.1 Cross-Ply CMCs; 1.3.4.2 2D Woven CMCs; 1.4 2.5D Woven Ceramic-Matrix Composites; 1.4.1 Theoretical Models; 1.4.1.1 Geometric Model; 1.4.1.2 Volume Content Model; 1.4.1.3 Stiffness Model; 1.4.1.4 Matrix Multicracking; 1.4.1.5 Interface Debonding; 1.4.1.6 Fibers Failure; 1.4.1.7 Stress-Strain Relationship; 1.4.2 Results and Discussions; 1.4.2.1 Effect of Warp Yarn Density on Volume Fraction; 1.4.2.2 Effect of Weft Yarn Density on Volume Fraction; 1.4.2.3 Effect of Yarn Cross-Sectional Shape on Volume Fraction
1.4.2.4 Effect of Warp Yarn Density on Elastic Modulus1.4.2.5 Effect of Weft Yarn Density on Elastic Modulus; 1.4.2.6 Effect of Yarn Cross-Section Shape on Elastic Modulus; 1.4.2.7 Effect of Warp Yarn Density on Damage Evolution; 1.4.2.8 Effect of Weft Yarn Density on Damage Evolution; 1.4.3 Experimental Comparisons; 1.5 Conclusions; References; 2 Fatigue Hysteresis Behavior of Ceramic-Matrix Composites; 2.1 Introduction; 2.2 Unidirectional Ceramic-Matrix Composites; 2.2.1 Stress Analysis; 2.2.1.1 Initial Loading; 2.2.1.2 Unloading; 2.2.1.3 Reloading; 2.2.2 Interface Debonding and Sliding
2.2.3 Stress-Strain Hysteresis Loops2.2.4 Results and Discussions; 2.2.4.1 Effect of Matrix Crack Spacing; 2.2.4.2 Effect of Interface Shear Stress; 2.2.4.3 Effect of Interface Debonded Energy; 2.2.4.4 Effect of Fibers Failure; 2.2.4.5 Effect of Fatigue Peak Stress; 2.2.4.6 Effect of Applied Cycle Number; 2.2.4.7 Effect of Fibers Volume Fraction; 2.2.4.8 Effect of Fiber Poisson Contraction; 2.2.4.9 Effect of Fibers Strength; 2.2.4.10 Effect of Fibers Weibull Modulus; 2.2.5 Experimental Comparisons; 2.2.5.1 SiC/CAS Composites; Cyclic Loading/Unloading Tensile Hysteresis Loops
1.2.3.5 Effect of Fiber Weibull Modulus1.2.3.6 Effect of Fiber Characteristic Strength; 1.2.4 Experimental Comparisons; 1.2.4.1 SiC/CAS Composites; 1.2.4.2 SiC/CAS-II Composite; 1.2.4.3 SiC/Borosilicate Composite; 1.2.4.4 SiC/1723 Composite; 1.3 Cross-Ply and 2D Woven Ceramic-Matrix Composites; 1.3.1 Stress Analysis; 1.3.2 Damage Models; 1.3.2.1 Transverse Multicracking; 1.3.2.2 Matrix Multicracking; 1.3.2.3 Interface Debonding; 1.3.2.4 Fiber Failure; 1.3.2.5 Stress-Strain Relationship; 1.3.3 Results and Discussions; 1.3.3.1 Effect of Transverse Fracture Energy
1.3.3.2 Effect of Fiber Weibull Modulus1.3.4 Experimental Comparisons; 1.3.4.1 Cross-Ply CMCs; 1.3.4.2 2D Woven CMCs; 1.4 2.5D Woven Ceramic-Matrix Composites; 1.4.1 Theoretical Models; 1.4.1.1 Geometric Model; 1.4.1.2 Volume Content Model; 1.4.1.3 Stiffness Model; 1.4.1.4 Matrix Multicracking; 1.4.1.5 Interface Debonding; 1.4.1.6 Fibers Failure; 1.4.1.7 Stress-Strain Relationship; 1.4.2 Results and Discussions; 1.4.2.1 Effect of Warp Yarn Density on Volume Fraction; 1.4.2.2 Effect of Weft Yarn Density on Volume Fraction; 1.4.2.3 Effect of Yarn Cross-Sectional Shape on Volume Fraction
1.4.2.4 Effect of Warp Yarn Density on Elastic Modulus1.4.2.5 Effect of Weft Yarn Density on Elastic Modulus; 1.4.2.6 Effect of Yarn Cross-Section Shape on Elastic Modulus; 1.4.2.7 Effect of Warp Yarn Density on Damage Evolution; 1.4.2.8 Effect of Weft Yarn Density on Damage Evolution; 1.4.3 Experimental Comparisons; 1.5 Conclusions; References; 2 Fatigue Hysteresis Behavior of Ceramic-Matrix Composites; 2.1 Introduction; 2.2 Unidirectional Ceramic-Matrix Composites; 2.2.1 Stress Analysis; 2.2.1.1 Initial Loading; 2.2.1.2 Unloading; 2.2.1.3 Reloading; 2.2.2 Interface Debonding and Sliding
2.2.3 Stress-Strain Hysteresis Loops2.2.4 Results and Discussions; 2.2.4.1 Effect of Matrix Crack Spacing; 2.2.4.2 Effect of Interface Shear Stress; 2.2.4.3 Effect of Interface Debonded Energy; 2.2.4.4 Effect of Fibers Failure; 2.2.4.5 Effect of Fatigue Peak Stress; 2.2.4.6 Effect of Applied Cycle Number; 2.2.4.7 Effect of Fibers Volume Fraction; 2.2.4.8 Effect of Fiber Poisson Contraction; 2.2.4.9 Effect of Fibers Strength; 2.2.4.10 Effect of Fibers Weibull Modulus; 2.2.5 Experimental Comparisons; 2.2.5.1 SiC/CAS Composites; Cyclic Loading/Unloading Tensile Hysteresis Loops