000845816 000__ 05733cam\a2200493Ii\4500 000845816 001__ 845816 000845816 005__ 20230306145039.0 000845816 006__ m\\\\\o\\d\\\\\\\\ 000845816 007__ cr\cn\nnnunnun 000845816 008__ 180829s2018\\\\si\\\\\\ob\\\\000\0\eng\d 000845816 019__ $$a1050363970 000845816 020__ $$a9789811317835$$q(electronic book) 000845816 020__ $$a9811317836$$q(electronic book) 000845816 020__ $$z9789811317828 000845816 020__ $$z9811317828 000845816 035__ $$aSP(OCoLC)on1050163193 000845816 035__ $$aSP(OCoLC)1050163193$$z(OCoLC)1050363970 000845816 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dEBLCP$$dGW5XE$$dNLE$$dYDX$$dUAB 000845816 049__ $$aISEA 000845816 050_4 $$aTA418.9.C6 000845816 08204 $$a620.1/4$$223 000845816 1001_ $$aLi, Longbiao,$$eauthor. 000845816 24510 $$aDamage, fracture, and fatigue of ceramic-matrix composites /$$cLongbiao Li. 000845816 264_1 $$aSingapore :$$bSpringer,$$c[2018] 000845816 264_4 $$c©2018 000845816 300__ $$a1 online resource. 000845816 336__ $$atext$$btxt$$2rdacontent 000845816 337__ $$acomputer$$bc$$2rdamedia 000845816 338__ $$aonline resource$$bcr$$2rdacarrier 000845816 504__ $$aIncludes bibliographical references. 000845816 5050_ $$aIntro; Contents; 1 Tensile Behavior of Ceramic-Matrix Composites; 1.1 Introduction; 1.2 Unidirectional Ceramic-Matrix Composites; 1.2.1 Stress Analysis; 1.2.2 Damage Models; 1.2.2.1 Matrix First Cracking; 1.2.2.2 Matrix Multicracking; 1.2.2.3 Interface Debonding; 1.2.2.4 Fibers Failure; 1.2.2.5 Stress-Strain Relationship; 1.2.3 Results and Discussions; 1.2.3.1 Effect of Matrix Weibull Modulus; 1.2.3.2 Effect of Matrix Cracking Characteristic Stress; 1.2.3.3 Effect of Fiber/Matrix Interface Shear Stress; 1.2.3.4 Effect of Fiber/Matrix Interface Debonded Energy 000845816 5058_ $$a1.2.3.5 Effect of Fiber Weibull Modulus1.2.3.6 Effect of Fiber Characteristic Strength; 1.2.4 Experimental Comparisons; 1.2.4.1 SiC/CAS Composites; 1.2.4.2 SiC/CAS-II Composite; 1.2.4.3 SiC/Borosilicate Composite; 1.2.4.4 SiC/1723 Composite; 1.3 Cross-Ply and 2D Woven Ceramic-Matrix Composites; 1.3.1 Stress Analysis; 1.3.2 Damage Models; 1.3.2.1 Transverse Multicracking; 1.3.2.2 Matrix Multicracking; 1.3.2.3 Interface Debonding; 1.3.2.4 Fiber Failure; 1.3.2.5 Stress-Strain Relationship; 1.3.3 Results and Discussions; 1.3.3.1 Effect of Transverse Fracture Energy 000845816 5058_ $$a1.3.3.2 Effect of Fiber Weibull Modulus1.3.4 Experimental Comparisons; 1.3.4.1 Cross-Ply CMCs; 1.3.4.2 2D Woven CMCs; 1.4 2.5D Woven Ceramic-Matrix Composites; 1.4.1 Theoretical Models; 1.4.1.1 Geometric Model; 1.4.1.2 Volume Content Model; 1.4.1.3 Stiffness Model; 1.4.1.4 Matrix Multicracking; 1.4.1.5 Interface Debonding; 1.4.1.6 Fibers Failure; 1.4.1.7 Stress-Strain Relationship; 1.4.2 Results and Discussions; 1.4.2.1 Effect of Warp Yarn Density on Volume Fraction; 1.4.2.2 Effect of Weft Yarn Density on Volume Fraction; 1.4.2.3 Effect of Yarn Cross-Sectional Shape on Volume Fraction 000845816 5058_ $$a1.4.2.4 Effect of Warp Yarn Density on Elastic Modulus1.4.2.5 Effect of Weft Yarn Density on Elastic Modulus; 1.4.2.6 Effect of Yarn Cross-Section Shape on Elastic Modulus; 1.4.2.7 Effect of Warp Yarn Density on Damage Evolution; 1.4.2.8 Effect of Weft Yarn Density on Damage Evolution; 1.4.3 Experimental Comparisons; 1.5 Conclusions; References; 2 Fatigue Hysteresis Behavior of Ceramic-Matrix Composites; 2.1 Introduction; 2.2 Unidirectional Ceramic-Matrix Composites; 2.2.1 Stress Analysis; 2.2.1.1 Initial Loading; 2.2.1.2 Unloading; 2.2.1.3 Reloading; 2.2.2 Interface Debonding and Sliding 000845816 5058_ $$a2.2.3 Stress-Strain Hysteresis Loops2.2.4 Results and Discussions; 2.2.4.1 Effect of Matrix Crack Spacing; 2.2.4.2 Effect of Interface Shear Stress; 2.2.4.3 Effect of Interface Debonded Energy; 2.2.4.4 Effect of Fibers Failure; 2.2.4.5 Effect of Fatigue Peak Stress; 2.2.4.6 Effect of Applied Cycle Number; 2.2.4.7 Effect of Fibers Volume Fraction; 2.2.4.8 Effect of Fiber Poisson Contraction; 2.2.4.9 Effect of Fibers Strength; 2.2.4.10 Effect of Fibers Weibull Modulus; 2.2.5 Experimental Comparisons; 2.2.5.1 SiC/CAS Composites; Cyclic Loading/Unloading Tensile Hysteresis Loops 000845816 506__ $$aAccess limited to authorized users. 000845816 520__ $$a"This book focuses on the damage, fracture and fatigue of ceramic-matrix composites. It investigates tensile damage and fracture, fatigue hysteresis, and the properties of interfaces subjected to cyclic fatigue loading. Further, it predicts fatigue life at room and elevated temperatures using newly developed damage models and methods, and it analyzes and compares damage, fracture and fatigue behavior of different fiber performs: unidirectional, cross-ply, 2D and 2.5D woven. The developed models and methods can be used to predict the damage and lifetime of ceramic-matrix composites during applications on hot section components.Ceramic-matrix composites (CMCs) are high-temperature structural materials with the significant advantages of high specific strength, high specific modulus, high temperature resistance and good thermal stability, which play a crucial role in the development of high thrust weight ratio aero engines. The critical nature of the application of these advanced materials makes comprehensive characterization a necessity, and as such this book provides designers with essential information pertaining not only to the strength of the materials, but also to their fatigue and damage characteristics."--$$cProvided by publisher. 000845816 588__ $$aOnline resource; title from PDF title page (viewed August 30, 2018). 000845816 650_0 $$aCeramic-matrix composites. 000845816 77608 $$iPrint version: $$z9811317828$$z9789811317828$$w(OCoLC)1042081024 000845816 852__ $$bebk 000845816 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-981-13-1783-5$$zOnline Access$$91397441.1 000845816 909CO $$ooai:library.usi.edu:845816$$pGLOBAL_SET 000845816 980__ $$aEBOOK 000845816 980__ $$aBIB 000845816 982__ $$aEbook 000845816 983__ $$aOnline 000845816 994__ $$a92$$bISE