000851442 000__ 05122cam\a2200529Mu\4500 000851442 001__ 851442 000851442 005__ 20230306145015.0 000851442 006__ m\\\\\o\\d\\\\\\\\ 000851442 007__ cr\un\nnnunnun 000851442 008__ 181013s2018\\\\xx\\\\\\o\\\\\100\0\eng\d 000851442 020__ $$a9783319940335$$q(electronic book) 000851442 020__ $$a3319940333$$q(electronic book) 000851442 020__ $$z9783319940328 000851442 035__ $$aSP(OCoLC)on1056895538 000851442 035__ $$aSP(OCoLC)1056895538 000851442 040__ $$aEBLCP$$beng$$cEBLCP$$dGW5XE$$dOCLCF 000851442 049__ $$aISEA 000851442 050_4 $$aQA176 000851442 08204 $$a512/.22$$223 000851442 1112_ $$aPIMS Summer School and Workshop "Groups, Representations and Cohomology"$$d(2015 :$$cIsle of Skye, Scotland) 000851442 24510 $$aGeometric and Topological Aspects of the Representation Theory of Finite Groups :$$bPIMS Summer School and Workshop, July 27-August 5, 2016 /$$cJon F. Carlson, Srikanth B. Iyengar, Julia Pevtsova, editors. 000851442 260__ $$aCham :$$bSpringer,$$c2018. 000851442 300__ $$a1 online resource (493 pages) 000851442 336__ $$atext$$btxt$$2rdacontent 000851442 337__ $$acomputer$$bc$$2rdamedia 000851442 338__ $$aonline resource$$bcr$$2rdacarrier 000851442 4901_ $$aSpringer Proceedings in Mathematics and Statistics ;$$vv. 242 000851442 500__ $$aDescription based upon print version of record. 000851442 500__ $$a5.3 A Family of Examples 000851442 5050_ $$aIntro; Preface; Contents; Restricting Homology to Hypersurfaces; 1 Differential Graded Algebra; 1.1 Tensor Products; 1.2 Divided Powers; 1.3 The Koszul Complex; 1.4 The Tate Construction; 1.5 Acyclic Closures; 2 Hypersurfaces; 2.1 Degree One Cycles; 2.2 Hypersurfaces; 3 Support Sets; 3.1 Support Sets; 3.2 Projective Dimension; 3.3 Alternative Description of Support; 3.4 Complexes over Regular Rings; 3.5 On Being Closed; 4 Defining Equations; 4.1 Complete Intersections; 5 Group Algebras of Elementary Abelian Groups; 5.1 Flat Dimension; 5.2 Rank Varieties; 5.3 Polynomial Extensions 000851442 5058_ $$a5.4 Nilpotent OperatorsReferences; Thick Subcategories of the Relative Stable Category; 1 Introduction; 2 Notation and Preliminaries; 3 Annihilators of Cohomology; 4 Additive Tensor Ideals; 5 Non-Noetherian Spectra; 6 Idempotent Modules; 7 Thick Subcategories by Inflation; 8 Empty Thick Tensor Ideals; 9 Examples; 10 One More Question; References; Nilpotent Elements in Hochschild Cohomology; 1 Introduction; 2 Preliminaries; 2.1 The Algebras; 2.2 Hochschild Cohomology; 2.3 Nilpotent Elements; 2.4 Independence of q; 3 A Minimal Bimodule Resolution; 3.1 The problem 000851442 5058_ $$a3.2 Relating to the one-sided resolution3.3 Minimal generators; 4 Homomorphisms and HHn(A); 4.1 Identities for homomorphisms; 4.2 The Proof of Proposition 4.3 for n+14; 4.3 Small Cases; References; Rational Cohomology and Supports for Linear Algebraic Groups; 1 Introduction; 2 Lecture I: Affine Group Schemes Over k; 2.1 Affine Group Schemes Over k; 2.2 Affine Group Schemes; 2.3 Characteristic p > 0; 2.4 Restricted Lie Algebras; 3 Lecture II: Algebraic Representations; 3.1 Algebraic Actions; 3.2 Examples; 3.3 Weights for G-Modules; 3.4 Representations of Frobenius Kernels 000851442 5058_ $$a4 Lecture III: Cohomological Support Varieties4.1 Indecomposable Versus Irreducible; 4.2 Derived Functors; 4.3 The Quillen Variety G and the Cohomological Support Variety GM; 5 Lecture IV: Support Varieties for Linear Algebraic Groups; 5.1 1-Parameter Subgroups; 5.2 p-Nilpotent Operators; 5.3 The Support Variety V(G)M; 5.4 Classes of Rational G-Modules; 5.5 Some Questions of Possible Interest; References; Anderson and Gorenstein Duality; 1 Introduction; 1.1 Motivation; 1.2 Description of Contents; 1.3 Conventions; 2 Anderson Duals; 2.1 Construction of Brown-Comenetz Duals 000851442 5058_ $$a2.2 Properties of Brown-Comenetz Duals2.3 Construction of Anderson Duals; 2.4 Properties of Anderson Duals; 3 The Gorenstein Condition; 3.1 Cellularization; 3.2 Morita Theory; 3.3 The Gorenstein Condition; 3.4 Gorenstein Duality; 3.5 Gorenstein Duality Relative to mathbbFp; 3.6 Mahowald-Rezk Duality; 4 Gorenstein Duality and Anderson Self-duality; 4.1 Nullifying HK; 4.2 Anderson Self-duality from Gorenstein Duality; 4.3 Gorenstein Duality from Anderson Self-duality; 5 Examples with Polynomial or Hypersurface Coefficient Rings; 5.1 The Čech Complex; 5.2 The Algebraic Context 000851442 506__ $$aAccess limited to authorized users. 000851442 650_0 $$aRepresentations of groups$$vCongresses. 000851442 650_0 $$aCohomology operations$$vCongresses. 000851442 7001_ $$aCarlson, J. F. 000851442 7001_ $$aIyengar, Srikanth,$$d1970- 000851442 7001_ $$aPevtsova, Julia. 000851442 7112_ $$aPIMS Summer School and Workshop "Geometric Methods in the Representation Theory of Finite Groups"$$d(2016 :$$cVancouver, B.C.) 000851442 77608 $$iPrint version:$$aCarlson, Jon F.$$tGeometric and Topological Aspects of the Representation Theory of Finite Groups : PIMS Summer School and Workshop, July 27-August 5 2016$$dCham : Springer,c2018$$z9783319940328 000851442 830_0 $$aSpringer proceedings in mathematics & statistics ;$$vv. 242. 000851442 852__ $$bebk 000851442 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-94033-5$$zOnline Access$$91397441.1 000851442 909CO $$ooai:library.usi.edu:851442$$pGLOBAL_SET 000851442 980__ $$aEBOOK 000851442 980__ $$aBIB 000851442 982__ $$aEbook 000851442 983__ $$aOnline 000851442 994__ $$a92$$bISE