000854132 000__ 05195cam\a2200505\i\4500 000854132 001__ 854132 000854132 005__ 20210515155423.0 000854132 006__ m\\\\\o\\d\\\\\\\\ 000854132 007__ cr\un\nnnunnun 000854132 008__ 160806s2016\\\\nyua\\\foab\\\001\0\eng\d 000854132 020__ $$a9781606505571 $$q(electronic book) 000854132 020__ $$z9781606505564 000854132 035__ $$a(MiAaPQ)EBC4612387 000854132 035__ $$a(Au-PeEL)EBL4612387 000854132 035__ $$a(CaPaEBR)ebr11239007 000854132 035__ $$a(CaONFJC)MIL942081 000854132 035__ $$a(OCoLC)956646477 000854132 040__ $$aFINmELB$$bspa$$erda$$cFINmELB 000854132 050_4 $$aTK5103.592.Q83$$bM575 2016 000854132 0820_ $$a621.382$$223 000854132 1001_ $$aMishra, Vinod K.,$$eauthor. 000854132 24513 $$aAn introduction to quantum communication /$$cVinod K. Mishra. 000854132 264_1 $$aNew York, [New York] (222 East 46th Street, New York, NY 10017) :$$bMomentum Press,$$c2016. 000854132 300__ $$a1 online resource (xi, 68 pages) :$$billustrations. 000854132 336__ $$atext$$2rdacontent 000854132 337__ $$acomputer$$2rdamedia 000854132 338__ $$aonline resource$$2rdacarrier 000854132 4901_ $$aCommunications and signal processing collection 000854132 504__ $$aIncludes bibliographical references (page [63]) and index. 000854132 5050_ $$a1. Why quantum communication? -- 1.1 Classical communication and its limits -- Concept of probability distribution -- Information or Shannon entropy -- Shannon-Hartley theorem -- Noisy-channel coding theorem -- Limits of classical communication -- 1.2 Role of quantum communication -- 000854132 5058_ $$a2. Physical basis of quantum communication -- 2.1 Basic quantum mechanics for QC -- Wave function -- Schr̲ödinger's equation -- Bra and Ket -- Probability function -- Superposition principle -- 2.2 Einstein-Podolsky-Rosen paradox -- 2.3 Some inequalities -- 2.4 Idea of entanglement -- 2.5 Quantum zeno effect -- 2.6 Decoherence -- 2.7 Propagation of light in an optical fiber -- 000854132 5058_ $$a3. Information theory for quantum communication -- 3.1 Mathematical representation of a single qubit -- 3.2 Entropies for information -- Von Neumann entropy -- Shannon entropy -- Renyi entropy -- Collision entropy -- Min-entropy -- Tsallis entropy -- Sharma-Mittal entropy -- 3.3 Shannon-like capacity theorems for QC -- 3.4 No-go theorems for qubits -- 3.5 A general model for quantum communication -- 3.6 Entanglement measures -- 3.7 Entanglement processing -- Appendix 3A. Special 3-qubit quantum states -- Appendix 3B. Peres-Horodecky criterion -- Appendix 3C. Von Neumann entropy -- Appendix 3D. Other information entropies -- 000854132 5058_ $$a4. Quantum error correction coding and cryptography -- 4.1 Need for coding in communication -- Source coding (classical) -- Channel coding (classical) -- 4.2 Source coding (quantum) -- 4.3 Error correction coding (quantum): an example -- 4.4 General error correction coding (quantum) -- 4.5 Cryptography: classical and quantum -- 4.6 A QKD protocols based on Heisenberg uncertainty principle -- 4.7 A QKD protocol based on entanglement -- 4.8 Practical QKD -- 000854132 5058_ $$a5. Quantum communication network (QCN) -- 5.1 A review of classical communication network -- 5.2 Basic QCN architecture -- 5.3 Quantum teleportation -- 5.4 Quantum super-dense coding -- 5.5 Quantum repeater network -- 5.6 Software defined quantum networking -- 000854132 5058_ $$a6. Physical realization of quantum communication network -- 6.1 Flying qubit sources -- 6.2 Stationary qubit sources -- 6.3 Qubit detection and measurement -- 6.4 Quantum repeater (QR) -- 6.5 Distributed quantum nodes -- Appendix 6A. Stationary qubit source technologies -- Reference -- Index. 000854132 506__ $$aAccess limited to authorized users. 000854132 5203_ $$aQuantum mechanics is the most successful theory for describing the microworld of photons, atoms, and their aggregates. It is behind much of the successes of modern technology. It has deep philosophical implications to the fundamental nature of material reality. A few decades ago, it was also realized that it is connected to the computer science and information theory. With this understanding were born the new disciplines of quantum computing and quantum communication. The current book introduces the very exciting area of quantum communication, which lies at the intersection of quantum mechanics, information theory, and atomic physics. The relevant concepts of these disciplines are explained, and their implication for the task of unbreakably secure communication is elucidated. The mathematical formulation of various approaches has been explained. An attempt has been made to keep the exposition self-contained. A senior undergraduate with good mathematics and physics background should be able to follow the current thinking about these issues after understanding the material presented in this book. 000854132 588__ $$aTitle from PDF title page (viewed on August 6, 2016). 000854132 650_0 $$aQuantum communication. 000854132 655_4 $$aLibros electronicos. 000854132 77608 $$iPrint version:$$z9781606505564 000854132 830_0 $$aCommunications and signal processing collection. 000854132 852__ $$bebk 000854132 85640 $$3ProQuest Ebook Central Academic Complete$$uhttps://univsouthin.idm.oclc.org/login?url=https://ebookcentral.proquest.com/lib/usiricelib-ebooks/detail.action?docID=4612387$$zOnline Access 000854132 909CO $$ooai:library.usi.edu:854132$$pGLOBAL_SET 000854132 980__ $$aEBOOK 000854132 980__ $$aBIB 000854132 982__ $$aEbook 000854132 983__ $$aOnline