000856117 000__ 06748cam\a2200553Ii\4500 000856117 001__ 856117 000856117 005__ 20230306145116.0 000856117 006__ m\\\\\o\\d\\\\\\\\ 000856117 007__ cr\un\nnnunnun 000856117 008__ 180529t20182018sz\\\\\\ob\\\\001\0\eng\d 000856117 019__ $$a1038059067$$a1040614813$$a1042917530$$a1047663801$$a1055359810$$a1059244408 000856117 020__ $$a9783319907819$$q(electronic book) 000856117 020__ $$a3319907816$$q(electronic book) 000856117 020__ $$z9783319907802 000856117 020__ $$z3319907808 000856117 0247_ $$a10.1007/978-3-319-90781-9$$2doi 000856117 035__ $$aSP(OCoLC)on1037946164 000856117 035__ $$aSP(OCoLC)1037946164$$z(OCoLC)1038059067$$z(OCoLC)1040614813$$z(OCoLC)1042917530$$z(OCoLC)1047663801$$z(OCoLC)1055359810$$z(OCoLC)1059244408 000856117 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dEBLCP$$dYDX$$dGW5XE$$dAZU$$dOCLCF$$dUPM$$dVT2$$dOCLCQ$$dCNCEN$$dWYU 000856117 049__ $$aISEA 000856117 050_4 $$aQD96.N8 000856117 08204 $$a543.66$$223 000856117 1001_ $$aSzymański, Sławomir,$$eauthor. 000856117 24510 $$aClassical and quantum molecular dynamics in NMR spectra /$$cSławomir Szymański, Piotr Bernatowicz. 000856117 264_1 $$aCham, Switzerland :$$bSpringer,$$c[2018] 000856117 264_4 $$c©2018 000856117 300__ $$a1 online resource 000856117 336__ $$atext$$btxt$$2rdacontent 000856117 337__ $$acomputer$$bc$$2rdamedia 000856117 338__ $$aonline resource$$bcr$$2rdacarrier 000856117 347__ $$atext file$$bPDF$$2rda 000856117 504__ $$aIncludes bibliographical references and index. 000856117 5050_ $$aIntro; Preface; Contents; 1 Introduction; References; 2 Principles of NMR Spectroscopy; 2.1 Nuclear Magnetic Dipole Moment in an External Magnetic Field; 2.2 The Statistical Operator of One-Spin System; 2.3 A Single-Pulse Experiment of PFT NMR Spectroscopy in the Vector Model; 2.3.1 The Radiofrequency Pulse in the Rotating Frame; 2.3.2 The FID Signal; 2.3.3 The Quadrature Detection of the FID Signal; 2.3.4 The Spectrum; 2.3.5 Summary; 2.4 Coupled Spin Systems: NMR Spectra Beyond the Vector Model; 2.4.1 Multi-spin Systems; 2.4.2 Spin Hamiltonian of Coupled Multi-spin Systems. 000856117 5058_ $$a2.4.3 The Spectrum of Coupled Multi-spin System. Part One2.4.4 The Notion of Quantum Coherence; 2.4.5 The Spectrum of Coupled Multi-spin System. Part Two; 2.4.6 Weakly Coupled Systems; 2.4.7 Molecular Symmetry in Spectra; 2.4.8 Magnetic Equivalence; 2.5 Introduction to Liouville Space Formalism; 2.5.1 One-Spin Systems; 2.5.2 Coupled Multi-spin Systems; 2.5.3 Operator Product Bases; 2.6 Remarks on the Solid State Systems; 2.6.1 Secular and Nonsecular Spin Interactions in Solids. CSA Tensor; 2.6.2 Secular Part of CSA Tensor. Angular Dependence; 2.6.3 Nuclei with Electric Quadrupole Moments. 000856117 5058_ $$a2.6.4 Dipole Interactions2.6.5 Spin Systems with Different Anisotropic Interactions; 2.6.6 Single-Crystal Spectra; 2.6.7 Example of Bandshape Modeling in Wide-Line Spectra of Solids; 2.6.8 Wide-Line Spectra of Powders; 2.6.9 Magic Angle Spinning Spectra of Powders; 2.7 Spin Echo; 2.8 Two Dimensional Spectra; References; 3 NMR Spectroscopy and Molecular Dynamics -- An Outlook; 3.1 Nuclear Spin Relaxation and Molecular Motion. Introductory Remarks; 3.1.1 Semiclassical Approach; 3.1.2 Quantum Mechanical Approach; 3.1.3 Justification of the Bloch Equations. 000856117 5058_ $$a3.1.4 Explicit Evaluation of Relaxation Rates for CSA Interactions3.1.5 Nuclear Spin Interactions Leading to Relaxation. Temperature Effects; 3.1.6 More on Dipolar Relaxation. Nuclear Overhauser Effect; 3.2 Dynamic Line Shape Effects in the Vector Model; 3.2.1 Stochastic Picture; 3.2.2 Heuristic Approach; 3.2.3 The FID Signal and the Line Shape Equation; 3.2.4 The Pulse Offset Effects; 3.2.5 DNMR Spectra of Solids and the Vector Model; 3.2.6 Selective Population Inversion; 3.2.7 EXSY -- A 2D Experiment; References; 4 Nuclear Spin Relaxation Effects in NMR Spectra; 4.1 Theory. 000856117 5058_ $$a4.1.1 Irreducible Spherical Tensor Description of Anisotropic Interactions4.1.2 Derivation of BWR Relaxation Matrix; 4.1.3 Heteronuclear Systems; 4.1.4 General Properties of the BWR Relaxation Matrix; 4.2 Molecular Tumbling in Isotropic Fluids; 4.2.1 Angular Correlation Functions in Rotational Diffusion Model; 4.2.2 BWR Relaxation Matrix in Isotropic Systems; 4.2.3 Local Dynamics. Other Models of Molecular Motion; 4.3 Nuclear Permutation and Magnetic Equivalence Symmetries; 4.3.1 Permutation Symmetry in Liouville Space. Macroscopic Symmetry; 4.3.2 Microscopic Symmetry. 000856117 506__ $$aAccess limited to authorized users. 000856117 520__ $$aThe book provides a detailed account of how condensed-phase molecular dynamics are reflected in the line shapes of NMR spectra. The theories establishing connections between random, time-dependent molecular processes and lineshape effects are exposed in depth. Special emphasis is placed on the theoretical aspects, involving in particular intermolecular processes in solution, and molecular symmetry issues. The Liouville super-operator formalism is briefly introduced and used wherever it is beneficial for the transparency of presentation. The proposed formal descriptions of the discussed problems are sufficiently detailed to be implemented on a computer. Practical applications of the theory in solid- and liquid-phase studies are illustrated with appropriate experimental examples, exposing the potential of the lineshape method in elucidating molecular dynamics NMR-observable molecular phenomena where quantization of the spatial nuclear degrees of freedom is crucial are addressed in the last part of the book. As an introduction to this exciting research field, selected aspects of the quantum mechanics of isolated systems undergoing rotational tunnelling are reviewed, together with some basic information about quantum systems interacting with their condensed environment. The quantum theory of rate processes evidenced in the NMR lineshapes of molecular rotors is presented, and illustrated with appropriate experimental examples from both solid- and liquid-phase spectra. In this context, the everlasting problem of the quantum-to-classical transition is discussed at a quantitative level. The book will be suitable for graduate students and new and practising researchers using NMR techniques. 000856117 588__ $$aOnline resource; title from PDF title page (viewed May 30, 2018). 000856117 650_0 $$aNuclear magnetic resonance spectroscopy. 000856117 650_0 $$aMolecular dynamics. 000856117 650_0 $$aQuantum chemistry. 000856117 7001_ $$aBernatowicz, Piotr,$$eauthor. 000856117 77608 $$iPrint version:$$aSzymański, Sławomir.$$tClassical and quantum molecular dynamics in NMR spectra.$$dCham, Switzerland : Springer, [2018]$$z3319907808$$z9783319907802$$w(OCoLC)1030484902 000856117 852__ $$bebk 000856117 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-90781-9$$zOnline Access$$91397441.1 000856117 909CO $$ooai:library.usi.edu:856117$$pGLOBAL_SET 000856117 980__ $$aEBOOK 000856117 980__ $$aBIB 000856117 982__ $$aEbook 000856117 983__ $$aOnline 000856117 994__ $$a92$$bISE