000856130 000__ 05188cam\a2200529Ii\4500 000856130 001__ 856130 000856130 005__ 20230306145117.0 000856130 006__ m\\\\\o\\d\\\\\\\\ 000856130 007__ cr\un\nnnunnun 000856130 008__ 180608t20182018sz\\\\\\ob\\\\000\0\eng\d 000856130 019__ $$a1039927723$$a1040652290$$a1047680833$$a1050973160$$a1058641301$$a1059247323$$a1066472927 000856130 020__ $$a9783319766294$$q(electronic book) 000856130 020__ $$a3319766295$$q(electronic book) 000856130 020__ $$z3319766287 000856130 020__ $$z9783319766287 000856130 0247_ $$a10.1007/978-3-319-76629-4$$2doi 000856130 035__ $$aSP(OCoLC)on1039095490 000856130 035__ $$aSP(OCoLC)1039095490$$z(OCoLC)1039927723$$z(OCoLC)1040652290$$z(OCoLC)1047680833$$z(OCoLC)1050973160$$z(OCoLC)1058641301$$z(OCoLC)1059247323$$z(OCoLC)1066472927 000856130 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dYDX$$dAZU$$dEBLCP$$dGW5XE$$dOCLCF$$dUPM$$dOCLCQ$$dVT2$$dAU@$$dCNCEN$$dWYU$$dOCLCQ$$dUKMGB 000856130 049__ $$aISEA 000856130 050_4 $$aP308 000856130 08204 $$a418.020285$$223 000856130 1001_ $$aScott, Bernard,$$eauthor. 000856130 24510 $$aTranslation, brains and the computer :$$ba neurolinguistic solution to ambiguity and complexity in machine translation /$$cBernard Scott. 000856130 264_1 $$aCham, Switzerland :$$bSpringer,$$c[2018] 000856130 264_4 $$c©2018 000856130 300__ $$a1 online resource. 000856130 336__ $$atext$$btxt$$2rdacontent 000856130 337__ $$acomputer$$bc$$2rdamedia 000856130 338__ $$aonline resource$$bcr$$2rdacarrier 000856130 347__ $$atext file$$bPDF$$2rda 000856130 4901_ $$aMachine translation: technologies and applications ;$$vvolume 2 000856130 504__ $$aIncludes bibliographical references. 000856130 5050_ $$a1 Introduction -- 2 Background -- Logos Model Beginnings -- Advent of Statistical MT -- Overview of Logos Model Translation Process -- Psycholinguistic and Neurolinguistic Assumptions -- On Language and Grammar -- Conclusion -- 3 -- Language and Ambiguity: Psycholinguistic Perspectives -- Levels of Ambiguity -- Language Acquisition and Translation -- Psycholinguistic Bases of Language Skills -- Practical Implications for Machine Translation -- Psycholinguistics in a Machine -- Conclusion -- 4- Language and Complexity: Neurolinguistic Perspectives -- Cognitive Complexity -- A Role for Semantic Abstraction -- Connectionism and Brain Simulation -- Logos Model as a Neural Network -- Language Processing in the Brain -- MT Performance and Underlying Competence -- Conclusion -- 5 -- Syntax and Semantics: Dichotomy or Integration? -- Syntax versus Semantics: Is There a Third, Semantico- Syntactic Perspective? -- Recent Views of the Cerebral Process -- Syntax and Semantics: How Do They Relate? -- Conclusion -- 6 -Logos Model: Design and Performance -- The Translation Problem -- How Do You Represent Natural Language? -- How Do You Store Linguistic Knowledge? -- How Do You Apply Stored Knowledge To The Input Stream? -- How do you Effect Target Transfer and Generation? -- How Do You Deal with Complexity Issues? -- Conclusion -- 7 -- Some limits on Translation Quality -- First Example -- Second Example -- Other Translation Examples -- Balancing the Picture -- Conclusion -- 8 -- Deep Learning MT and Logos Model -- Points of Similarity and Differences -- Deep Learning, Logos Model and the Brain -- On Learning -- The Hippocampus Again -- Conclusion -- Part II -- The SAL Representation Language -- SAL Nouns -- SAL Verbs -- SAL Adjectives -- SAL Adverbs. 000856130 506__ $$aAccess limited to authorized users. 000856130 5208_ $$aThis book is about machine translation (MT) and the classic problems associated with this language technology. It examines the causes of these problems and, for linguistic, rule-based systems, attributes the cause to language?s ambiguity and complexity and their interplay in logic-driven processes. For non-linguistic, data-driven systems, the book attributes translation shortcomings to the very lack of linguistics. It then proposes a demonstrable way to relieve these drawbacks in the shape of a working translation model (Logos Model) that has taken its inspiration from key assumptions about psycholinguistic and neurolinguistic function. The book suggests that this brain-based mechanism is effective precisely because it bridges both linguistically driven and data-driven methodologies. It shows how simulation of this cerebral mechanism has freed this one MT model from the all-important, classic problem of complexity when coping with the ambiguities of language. Logos Model accomplishes this by a data-driven process that does not sacrifice linguistic knowledge, but that, like the brain, integrates linguistics within a data-driven process. 000856130 588__ $$aDescripition based on print version record. 000856130 650_0 $$aMachine translating. 000856130 650_0 $$aTranslating and interpreting$$xData processing. 000856130 650_0 $$aNeurolinguistics. 000856130 650_0 $$aPsycholinguistics. 000856130 77608 $$iPrint version:$$aSCOTT, BERNARD.$$tTRANSLATION, BRAINS AND THE COMPUTER.$$d[Place of publication not identified] : SPRINGER INTERNATIONAL PU, 2018$$z3319766287$$w(OCoLC)1022085174 000856130 830_0 $$aMachine translation: technologies and applications ;$$vv. 2. 000856130 852__ $$bebk 000856130 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-76629-4$$zOnline Access$$91397441.1 000856130 909CO $$ooai:library.usi.edu:856130$$pGLOBAL_SET 000856130 980__ $$aEBOOK 000856130 980__ $$aBIB 000856130 982__ $$aEbook 000856130 983__ $$aOnline 000856130 994__ $$a92$$bISE