000856195 000__ 05093cam\a2200541Ii\4500 000856195 001__ 856195 000856195 005__ 20230306145122.0 000856195 006__ m\\\\\o\\d\\\\\\\\ 000856195 007__ cr\un\nnnunnun 000856195 008__ 180716s2018\\\\sz\\\\\\ob\\\\100\0\eng\d 000856195 019__ $$a1044867488 000856195 020__ $$a9783319911434$$q(electronic book) 000856195 020__ $$a3319911430$$q(electronic book) 000856195 020__ $$z9783319911427 000856195 020__ $$z3319911422 000856195 035__ $$aSP(OCoLC)on1044733782 000856195 035__ $$aSP(OCoLC)1044733782$$z(OCoLC)1044867488 000856195 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dGW5XE$$dEBLCP$$dYDX$$dOCLCF$$dOCLCO$$dFIE$$dUKMGB 000856195 049__ $$aISEA 000856195 050_4 $$aQ370$$b.I574 2017eb 000856195 08204 $$a519.5/42$$223 000856195 1112_ $$aInternational Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering$$n(37th :$$d2017 :$$cJarinu, Brazil) 000856195 24510 $$aBayesian Inference and Maximum Entropy Methods in Science and Engineering :$$bMaxEnt 37, Jarinu, Brazil, July 09-14, 2017 /$$cAdriano Polpo, Julio Stern, Francisco Louzada, Rafael Izbicki, Hellinton Takada, editors. 000856195 264_1 $$aCham, Switzerland :$$bSpringer,$$c[2018] 000856195 264_4 $$c©2018 000856195 300__ $$a1 online resource. 000856195 336__ $$atext$$btxt$$2rdacontent 000856195 337__ $$acomputer$$bc$$2rdamedia 000856195 338__ $$aonline resource$$bcr$$2rdacarrier 000856195 4901_ $$aSpringer proceedings in mathematics & statistics ;$$vvolume 29 000856195 504__ $$aIncludes bibliographical references. 000856195 5050_ $$aIntro; Preface; Contents; Contributors; Quantum Phases in Entropic Dynamics; 1 Introduction; 2 Entropic Dynamics -- A Brief Review; 3 Gauge Symmetry and Multi-Valued Phases; 4 Discussion; References; Bayesian Approach to Variable Splitting Forward Models; 1 Introduction; 2 Forward Model 1; 3 Forward Model 2; 4 Forward Model 3; 5 Forward Models 4 and 5; 6 Forward Models 6 and 7; 7 Conclusions; References; Prior Shift Using the Ratio Estimator; 1 Introduction; 2 Setting and Goals; 3 Quantification Methods; 3.1 The Classify and Count Estimator (CCE); 3.2 The Ratio Estimator (RE); 4 Experiments 000856195 5058_ $$a5 Final DiscussionReferences; Bayesian Meta-Analytic Measure; 1 Introduction; 2 Meta-Analysis Measure; 3 Example; 4 Final Remarks; References; Feature Selection from Local Lift Dependence-Based Partitions; 1 Introduction; 2 Local Lift Dependence; 3 Feature Selection Algorithm from Local Lift Dependence-Based Partitions; 3.1 Classical Feature Selection Algorithm; 3.2 Local Lift Dependence-Based Partitions; 3.3 Cost Functions; 3.4 Stopping Criteria for the Algorithm; 4 Applications; 5 Final Remarks; References; Probabilistic Inference of Surface Heat Flux Densities from Infrared Thermography 000856195 5058_ $$a1 Introduction2 The Measurement System; 3 Forward Model; 3.1 Heat Diffusion; 3.2 Measurement System; 4 Heatflux Model: Adaptive Kernel; 4.1 Effective Number of Degrees of Freedom (eDOF); 5 Exploring the Parameter Space; 6 Synthetic Data as Benchmark; 7 Processing Measured Data; 8 Conclusions; References; Schrödinger's Zebra: Applying Mutual Information Maximization to Graphical Halftoning; 1 Introduction; 2 Information Theory and Halftoning; 3 Quantum Halftoning; 4 Implementation and Examples; 5 Obtaining Insights Regarding Human Vision; 6 Conclusion; References 000856195 5058_ $$aRegression of Fluctuating System Properties: Baryonic Tully-Fisher Scaling in Disk Galaxies1 Introduction; 2 GLS Regression: Principles and Motivation; 3 Application of GLS to Tully-Fisher Scaling; 3.1 The Baryonic Tully-Fisher Relation; 3.2 Regression Analysis; 4 Conclusion; References; Bayesian Portfolio Optimization for Electricity Generation Planning; 1 Introduction; 2 Classical Approach; 3 Bayesian Approach; 3.1 Improper Prior Case; 3.2 Proper Prior Case; 4 Results; 5 Final Remarks; References; Bayesian Variable Selection Methods for Log-Gaussian Cox Processes; 1 Introduction 000856195 5058_ $$a2 Spatial Point Pattern Process2.1 Log-Gaussian Cox Process; 3 Bayesian Variable Selection; 3.1 Kuo and Mallick (KM); 3.2 Gibbs Variable Selection (GVS); 3.3 Stochastic Search Variable Selection (SSVS); 3.4 Comparing the Methods; 4 Simulation Study; 4.1 Prior Distributions; 4.2 Landscapes Definitions; 4.3 Results; 5 Conclusion; References; Effect of Hindered Diffusion on the Parameter Sensitivity of Magnetic Resonance Spectra; 1 Introduction; 2 Magnetic Resonance; 3 Hindered Diffusion; 3.1 Recurrence; 3.2 Coordinate Systems; 4 Simple Model; 5 Discussion; References 000856195 506__ $$aAccess limited to authorized users. 000856195 588__ $$aOnline resource; title from PDF title page (viewed July 17, 2018). 000856195 650_0 $$aMaximum entropy method$$vCongresses. 000856195 650_0 $$aBayesian statistical decision theory$$vCongresses. 000856195 655_7 $$aConference papers and proceedings.$$2lcgft 000856195 7001_ $$aPolpo, Adriano,$$eeditor. 000856195 77608 $$iPrint version: $$z3319911422$$z9783319911427$$w(OCoLC)1030909931 000856195 830_0 $$aSpringer proceedings in mathematics & statistics ;$$vv. 29. 000856195 852__ $$bebk 000856195 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-91143-4$$zOnline Access$$91397441.1 000856195 909CO $$ooai:library.usi.edu:856195$$pGLOBAL_SET 000856195 980__ $$aEBOOK 000856195 980__ $$aBIB 000856195 982__ $$aEbook 000856195 983__ $$aOnline 000856195 994__ $$a92$$bISE