000856368 000__ 04900cam\a2200541Ii\4500 000856368 001__ 856368 000856368 005__ 20230306145132.0 000856368 006__ m\\\\\o\\d\\\\\\\\ 000856368 007__ cr\un\nnnunnun 000856368 008__ 181108s2018\\\\si\\\\\\o\\\\\100\0\eng\d 000856368 019__ $$a1066197983$$a1066224771 000856368 020__ $$a9789811325687$$q(electronic book) 000856368 020__ $$a9811325685$$q(electronic book) 000856368 020__ $$z9789811325670 000856368 020__ $$z9811325677 000856368 0247_ $$a10.1007/978-981-13-2568-7$$2doi 000856368 035__ $$aSP(OCoLC)on1061859867 000856368 035__ $$aSP(OCoLC)1061859867$$z(OCoLC)1066197983$$z(OCoLC)1066224771 000856368 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dEBLCP$$dYDX$$dN$T$$dOCLCF 000856368 049__ $$aISEA 000856368 050_4 $$aQD380 000856368 08204 $$a620.1/92$$223 000856368 1112_ $$aInternational Conference on Advances in Polymer Science and Technology$$d(2017 :$$cNew Delhi, India) 000856368 24510 $$aAdvances in polymer sciences and technology :$$bselect papers from APA 2017 /$$cBhuvanesh Gupta, Anup K. Ghosh, Atsushi Suzuki, Sunita Rattan, editors. 000856368 264_1 $$aSingapore :$$bSpringer,$$c2018. 000856368 300__ $$a1 online resource (xii, 246 pages). 000856368 336__ $$atext$$btxt$$2rdacontent 000856368 337__ $$acomputer$$bc$$2rdamedia 000856368 338__ $$aonline resource$$bcr$$2rdacarrier 000856368 4901_ $$aMaterials horizons,$$x2524-5384 000856368 5050_ $$aIntro; Preface; Contents; About the Editors; Designing and Nanofunctionalization of Infection-Resistant Polyester Suture; 1 Introduction; 2 Experimental; 2.1 Materials; 2.2 Development of PET Monofilament; 2.3 Plasma Functionalization of PET Monofilament; 2.4 Determination of Carboxyl Content; 2.5 Triclosan Immobilization on the Functionalized PET Filament; 2.6 Energy Dispersive X-ray Analysis (EDX); 2.7 Mechanical Studies of PET Suture; 2.8 Surface Topography of PET Suture; 2.9 Antimicrobial Study; 3 Results and Discussion; 3.1 Plasma Functionalization; 3.2 Characterizations 000856368 5058_ $$a3.3 Bacterial Adherence on PET Suture4 Conclusion; References; Mandelic Acid Incorporated Antimicrobial Soy Protein Film Fabricated by Solution Casting; 1 Introduction; 2 Materials and Methods; 2.1 Materials; 2.2 Preparation of Soy Protein Isolate Film; 2.3 Preparation of Mandelic Acid Incorporated SPI Films; 2.4 Antimicrobial Studies; 2.5 Characterizations; 3 Results and Discussion; 4 Conclusions; References; Structural and Morphological Analysis of Newly Synthesized CuO@Alginate Nanocomposite with Enriched Electrical Properties; 1 Introduction; 2 Experimental Details 000856368 5058_ $$a2.1 Synthesis of Copper Oxide and Copper Oxide Nanocomposite with Alginate2.2 Characterization Techniques; 3 Results and Discussion; 3.1 Structural and Morphological Analysis; 3.2 Dielectrical Analysis; 4 Conclusions; References; Synthesis of Lysine Mimicking Membrane Active Antimicrobial Polymers; 1 Introduction; 2 Materials and Methods; 2.1 Materials; 2.2 Methods; 3 Results and Discussion; 4 Conclusion; References; Antibacterial Activity of Antimicrobial Peptide (AMP) Grafted Polystyrene Surface; 1 Introduction; 2 Material and Methods; 2.1 Materials; 2.2 Bacterial Strain and Media 000856368 5058_ $$a2.3 Peptide2.4 Antibacterial Activity of CKLR in Solution; 2.5 CKLR Immobilization on Modified Microwells; 2.6 Antibacterial Activity Determination of CKLR Immobilized PS Surface (PS-MAL-CKLR); 2.7 Surface Segregation of Peptide; 3 Results; 3.1 Antibacterial Activity of Soluble CKLR; 3.2 Antibacterial Activity of Immobilized CKLR; 3.3 Surface Segregation of Peptide; 4 Conclusion; References; Novel Polymeric Adsorbent for the Remediation of Cu(II) Ions from Water; 1 Introduction; 2 Experimental; 2.1 Materials and Method; 2.2 Preparation of Solution of Adsorbate 000856368 5058_ $$a2.3 Studies of Adsorption Experiment3 Result and Discussion; 3.1 Adsorption Behavior of the Composite Polyaniline/Sn(IV) Phosphate Composite Towards Heavy Metals Ions; 3.2 Effect of Contact Time and Initial Concentration; 3.3 Effect of pH; 3.4 Effect of Doses; 3.5 Kinetics of Adsorption; 3.6 Thermodynamic Studies; 3.7 Adsorption Isotherm; 4 Conclusion; References; Artificial Neural Network Modeling to Predict Bacterial Attachment on Composite Biopolymeric Scaffold; 1 Introduction; 2 Materials and Methods; 2.1 Methods; 2.2 Determination of Input Parameters; 2.3 Bacterial Adherence Activity 000856368 506__ $$aAccess limited to authorized users. 000856368 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed November 8, 2018). 000856368 650_0 $$aPolymers$$vCongresses. 000856368 7001_ $$aGupta, Bhuvanesh,$$eeditor. 000856368 7001_ $$aGhosh, Anup K.,$$eeditor. 000856368 7001_ $$aSuzuki, Atsushi,$$eeditor. 000856368 7001_ $$aRattan, Sunita,$$eeditor. 000856368 77608 $$iPrint version:$$z9811325677$$z9789811325670$$w(OCoLC)1048942313 000856368 830_0 $$aMaterials horizons,$$x2524-5384 000856368 852__ $$bebk 000856368 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-981-13-2568-7$$zOnline Access$$91397441.1 000856368 909CO $$ooai:library.usi.edu:856368$$pGLOBAL_SET 000856368 980__ $$aEBOOK 000856368 980__ $$aBIB 000856368 982__ $$aEbook 000856368 983__ $$aOnline 000856368 994__ $$a92$$bISE