Linked e-resources
Details
Table of Contents
Introduction.- 1 Preliminaries
2 Algebraic curves.- 3 Complex structure and the topology of curves.- 4 Curves in projective spaces.- 5 Plücker formulas.- 6 Mappings of curves.- 7 Differential 1-forms on curves.- 8 Line bundles, linear systems, and divisors.- 9 Riemann-Roch formula and its applications.- 10 Proof of the Riemann-Roch formula.- 11 Weierstrass points.- 12 Abel's theorem.- 13 Examples of moduli spaces.- 14 Approaches to constructing moduli spaces.- 15 Moduli spaces of rational curves with marked points.- 16 Stable curves.- 17 A backward look from the viewpoint of characteristic classes.- 18 Moduli spaces of stable maps.- 19 Exam problems.- References.- Index.
2 Algebraic curves.- 3 Complex structure and the topology of curves.- 4 Curves in projective spaces.- 5 Plücker formulas.- 6 Mappings of curves.- 7 Differential 1-forms on curves.- 8 Line bundles, linear systems, and divisors.- 9 Riemann-Roch formula and its applications.- 10 Proof of the Riemann-Roch formula.- 11 Weierstrass points.- 12 Abel's theorem.- 13 Examples of moduli spaces.- 14 Approaches to constructing moduli spaces.- 15 Moduli spaces of rational curves with marked points.- 16 Stable curves.- 17 A backward look from the viewpoint of characteristic classes.- 18 Moduli spaces of stable maps.- 19 Exam problems.- References.- Index.