Linked e-resources
Details
Table of Contents
Intro; Preface; Contents; Part I: Plant-Mediated Synthesis and Applications of Nanomaterials; Chapter 1: Nanomaterials and Plant Potential: An Overview; 1.1 Introduction; 1.2 Type of Engineered NMs; 1.3 Characterization Techniques; 1.4 Physical and Chemical Characters of NMs; 1.5 Application and Impact of NMs; 1.6 Conclusion; References; Chapter 2: Basic Chemistry and Biomedical Significance of Nanomaterials; 2.1 Introduction; 2.2 Importance of Nanoscale; 2.3 Nanochemistry; 2.3.1 Quantum Confinement; 2.3.2 Surface Plasmon Resonance (SPR); 2.3.3 Nanoparticle Size Effects
2.3.4 Size Distribution of Nanostructures2.3.5 Shape of Nanoparticles; 2.3.6 Agglomeration of Nanoparticles; 2.3.7 Effect of pH, Ionic Strength, and Temperature on Agglomeration; 2.3.8 Solubility and Phase Transition of Nanoparticles; 2.4 Nanomaterials in Bio-systems; 2.4.1 Micelles and Liposomes; 2.4.2 Microemulsions; 2.4.3 Other Relevant Materials; 2.5 Preparation of Nanostructures for Use in Medicine; 2.5.1 Emulsion-Solvent Evaporation Method; 2.5.2 Double Emulsion and Evaporation Method; 2.5.3 Salting-Out Method; 2.5.4 Emulsion-Diffusion Method
2.5.5 Solvent Displacement/Precipitation Method2.6 Nanoencapsulation and Nanoencapsulated Materials; 2.7 Medical Significance of Nanostructures; 2.8 Conclusion; References; Chapter 3: Plant-Mediated Fabrication of Gold Nanoparticles and Their Applications; 3.1 Introduction; 3.2 Fabrication and Characterization of Gold Nanoparticles; 3.2.1 Fabrication of Gold Nanoparticles; 3.2.2 Characterization of Gold Nanoparticles; 3.2.2.1 Ultraviolet-Visible (UV-Vis) Spectroscopy; 3.2.2.2 Microscopy; 3.2.2.3 X-Ray Diffraction (XRD); 3.2.2.4 Dynamic Light Scattering (DLS) and Zeta Potential Analysis
3.2.2.5 Fourier Transform Infrared Spectroscopy (FTIR)3.3 Factors Affecting the Fabrication; 3.3.1 Temperature; 3.3.2 pH; 3.3.3 Incubation Time; 3.3.4 Plant Biomass Concentration; 3.4 Applications of Gold Nanoparticles; 3.4.1 Antimicrobial Agents; 3.4.2 Catalytic Activity and Water Purification; 3.4.3 Antioxidant Potential; 3.4.4 Photochemical Agents; 3.4.5 Plant Response to Gold Nanoparticles; 3.4.6 Biomedical Application; 3.5 Conclusion; References; Chapter 4: Green Synthesis of Gold Nanoparticles by Using Natural Gums; 4.1 Introduction; 4.2 Description of Various Gums
4.3 Synthesis of AuNPs4.3.1 Reaction Mechanism; 4.4 Characterization of AuNPs; 4.4.1 EDX Analysis; 4.4.2 Dynamic Light Scattering (DLS); 4.4.3 XRD Analysis; 4.5 Applications; 4.6 Conclusion; References; Chapter 5: Plant-Based Fabrication of Silver Nanoparticles and Their Application; 5.1 Introduction; 5.2 Fabrication and Characterization of Ag NPs; 5.3 Factors Affecting Fabrication of Ag NPs; 5.3.1 Temperature; 5.3.2 pH; 5.3.3 Incubation Time; 5.3.4 Plant Biomass Concentration; 5.4 Applications of Ag NPs; 5.4.1 Antimicrobial; 5.4.2 Biomedical Application
2.3.4 Size Distribution of Nanostructures2.3.5 Shape of Nanoparticles; 2.3.6 Agglomeration of Nanoparticles; 2.3.7 Effect of pH, Ionic Strength, and Temperature on Agglomeration; 2.3.8 Solubility and Phase Transition of Nanoparticles; 2.4 Nanomaterials in Bio-systems; 2.4.1 Micelles and Liposomes; 2.4.2 Microemulsions; 2.4.3 Other Relevant Materials; 2.5 Preparation of Nanostructures for Use in Medicine; 2.5.1 Emulsion-Solvent Evaporation Method; 2.5.2 Double Emulsion and Evaporation Method; 2.5.3 Salting-Out Method; 2.5.4 Emulsion-Diffusion Method
2.5.5 Solvent Displacement/Precipitation Method2.6 Nanoencapsulation and Nanoencapsulated Materials; 2.7 Medical Significance of Nanostructures; 2.8 Conclusion; References; Chapter 3: Plant-Mediated Fabrication of Gold Nanoparticles and Their Applications; 3.1 Introduction; 3.2 Fabrication and Characterization of Gold Nanoparticles; 3.2.1 Fabrication of Gold Nanoparticles; 3.2.2 Characterization of Gold Nanoparticles; 3.2.2.1 Ultraviolet-Visible (UV-Vis) Spectroscopy; 3.2.2.2 Microscopy; 3.2.2.3 X-Ray Diffraction (XRD); 3.2.2.4 Dynamic Light Scattering (DLS) and Zeta Potential Analysis
3.2.2.5 Fourier Transform Infrared Spectroscopy (FTIR)3.3 Factors Affecting the Fabrication; 3.3.1 Temperature; 3.3.2 pH; 3.3.3 Incubation Time; 3.3.4 Plant Biomass Concentration; 3.4 Applications of Gold Nanoparticles; 3.4.1 Antimicrobial Agents; 3.4.2 Catalytic Activity and Water Purification; 3.4.3 Antioxidant Potential; 3.4.4 Photochemical Agents; 3.4.5 Plant Response to Gold Nanoparticles; 3.4.6 Biomedical Application; 3.5 Conclusion; References; Chapter 4: Green Synthesis of Gold Nanoparticles by Using Natural Gums; 4.1 Introduction; 4.2 Description of Various Gums
4.3 Synthesis of AuNPs4.3.1 Reaction Mechanism; 4.4 Characterization of AuNPs; 4.4.1 EDX Analysis; 4.4.2 Dynamic Light Scattering (DLS); 4.4.3 XRD Analysis; 4.5 Applications; 4.6 Conclusion; References; Chapter 5: Plant-Based Fabrication of Silver Nanoparticles and Their Application; 5.1 Introduction; 5.2 Fabrication and Characterization of Ag NPs; 5.3 Factors Affecting Fabrication of Ag NPs; 5.3.1 Temperature; 5.3.2 pH; 5.3.3 Incubation Time; 5.3.4 Plant Biomass Concentration; 5.4 Applications of Ag NPs; 5.4.1 Antimicrobial; 5.4.2 Biomedical Application