000866339 000__ 03157cam\a2200433Ii\4500 000866339 001__ 866339 000866339 005__ 20230306145706.0 000866339 006__ m\\\\\o\\d\\\\\\\\ 000866339 007__ cr\cn\nnnunnun 000866339 008__ 190327s2019\\\\si\\\\\\ob\\\\001\0\eng\d 000866339 020__ $$a9789811365812$$q(electronic book) 000866339 020__ $$a9811365814$$q(electronic book) 000866339 020__ $$z9789811365805 000866339 0247_ $$a10.1007/978-981-13-6581-2$$2doi 000866339 035__ $$aSP(OCoLC)on1090764989 000866339 035__ $$aSP(OCoLC)1090764989 000866339 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dEBLCP$$dUAB$$dCOO 000866339 049__ $$aISEA 000866339 050_4 $$aQC174.26.W28 000866339 08204 $$a530.12/4$$223 000866339 1001_ $$aLiu, Wu-Ming,$$eauthor. 000866339 24510 $$aSchrödinger equations in nonlinear systems /$$cWu-Ming Liu, Emmanuel Kengne. 000866339 264_1 $$aSingapore :$$bSpringer,$$c2019. 000866339 300__ $$a1 online resource (xvi, 569 pages) :$$billustrations 000866339 336__ $$atext$$btxt$$2rdacontent 000866339 337__ $$acomputer$$bc$$2rdamedia 000866339 338__ $$aonline resource$$bcr$$2rdacarrier 000866339 504__ $$aIncludes bibliographical references and index. 000866339 5050_ $$aIntro; Preface; Acknowledgements; Contents; 1 Overview of Nonlinear Schrödinger Equations; 1.1 One-dimensional Cubic Nonlinear …; 1.2 Derivative Nonlinear Schrödinger Equation; 1.3 Inhomogeneous Nonlinear Schrödinger Equations (Gross-Pitaevskii Equations); 1.4 Multicomponent Nonlinear Schrödinger Equation; References; 2 Well-Posedness of Nonlocal Boundary-Value Problems and Schrödinger Equations; 2.1 Boundary-Value Problem from the Viewpoint of the General Theory of Partial Differential Equations; 2.2 Perturbation of a Two-Point Boundary-Value Problem 000866339 5058_ $$a2.2.1 Perturbation of Ill-Posed Boundary-Value Problems by an Integral Term in the Boundary Condition2.2.2 Perturbation of Well-Posed Boundary-Value Problems by Integral Terms in the Boundary Condition; 2.3 Well-Posedness of a Two-Point Boundary-Value Problem in a Layer for a System of Evolution Equations; 2.4 Boundary-Value Problem for Factorized Operators with Dirichlet-Type Boundary Conditions; 2.4.1 Formulation of Problem and Notations; 2.4.2 Uniqueness of Solutions to Problem (2.22)-(2.24); 2.4.3 Existence of Solutions of Problem (2.22)-(2.24) 000866339 5058_ $$a3.4 Interacting Signal Packets in the Lossless Network of Fig.3.1 in Absence of Second-Neighbor Interactions3.4.1 Coupled NLS Equations for the Lossless Discrete Nonlinear Electrical Network of Fig.3.1 for L3=infty; 3.4.2 Modulational Instability; 3.4.3 Analytical Study of Matter-Wave Solitons in the Network; 3.4.4 Bright-Kink and Kink-Bright Solitary Wave Solutions; References; 4 Derivative Nonlinear Schrödinger Equations for Single Transmission Lines; 4.1 Generation of Nonlinear Modulated Waves in the Lossless Network of Fig. 3.1 000866339 506__ $$aAccess limited to authorized users. 000866339 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed March 27, 2019). 000866339 650_0 $$aGross-Pitaevskii equations. 000866339 7001_ $$aKengne, Emmanuel,$$eauthor. 000866339 852__ $$bebk 000866339 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-981-13-6581-2$$zOnline Access$$91397441.1 000866339 909CO $$ooai:library.usi.edu:866339$$pGLOBAL_SET 000866339 980__ $$aEBOOK 000866339 980__ $$aBIB 000866339 982__ $$aEbook 000866339 983__ $$aOnline 000866339 994__ $$a92$$bISE