Linked e-resources
Details
Table of Contents
Machine generated contents note: Part I. Background and Setting: 1. Why missing data matter; 2. Missing data mechanisms; 3. Estimands; Part II. Preventing Missing Data: 4. Trial design considerations; 5. Trial conduct considerations; Part III. Analytic Considerations: 6. Methods of estimation; 7. Models and modeling considerations; 8. Methods of dealing with missing data; Part IV. Analyses and the Analytic Road Map: 9. Analyses of incomplete data; 10. MNAR analyses; 11. Choosing primary estimands and analyses; 12. The analytic road map; 13. Analyzing incomplete categorical data; 14. Example; 15. Putting principles into practice.