000890281 000__ 03329cam\a2200505Ii\4500 000890281 001__ 890281 000890281 005__ 20230306145919.0 000890281 006__ m\\\\\o\\d\\\\\\\\ 000890281 007__ cr\cn\nnnunnun 000890281 008__ 190509s2019\\\\sz\\\\\\ob\\\\001\0\eng\d 000890281 019__ $$a1105186392 000890281 020__ $$a9783030053123$$q(electronic book) 000890281 020__ $$a3030053121$$q(electronic book) 000890281 020__ $$z9783030053116 000890281 0247_ $$a10.1007/978-3-030-05 000890281 035__ $$aSP(OCoLC)on1100588432 000890281 035__ $$aSP(OCoLC)1100588432$$z(OCoLC)1105186392 000890281 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dEBLCP$$dGW5XE$$dUKMGB$$dOCLCF$$dLQU 000890281 049__ $$aISEA 000890281 050_4 $$aQA641 000890281 08204 $$a516.373$$223 000890281 1001_ $$aAlexander, Stephanie,$$eauthor. 000890281 24513 $$aAn invitation to Alexandrov geometry :$$bCAT(0) spaces /$$cStephanie Alexander, Vitali Kapovitch, Anton Petrunin. 000890281 264_1 $$aCham, Switzerland :$$bSpringer,$$c[2019] 000890281 300__ $$a1 online resource. 000890281 336__ $$atext$$btxt$$2rdacontent 000890281 337__ $$acomputer$$bc$$2rdamedia 000890281 338__ $$aonline resource$$bcr$$2rdacarrier 000890281 4901_ $$aSpringerBriefs in mathematics,$$x2191-8201 000890281 504__ $$aIncludes bibliographical references and index. 000890281 5050_ $$aIntro; Preface; Early history of Alexandov geometry; Manifesto of Alexandrov geometry; Acknowledgements; Contents; 1 Preliminaries; 1.1 Metric spaces; 1.2 Constructions; 1.3 Geodesics, triangles, and hinges; 1.4 Length spaces; 1.5 Model angles and triangles; 1.6 Angles and the first variation; 1.7 Space of directions and tangent space; 1.8 Hausdorff convergence; 1.9 Gromov-Hausdorff convergence; 2 Gluing theorem and billiards; 2.1 The 4-point condition; 2.2 Thin triangles; 2.3 Reshetnyak's gluing theorem; 2.4 Reshetnyak puff pastry; 2.5 Wide corners; 2.6 Billiards; 2.7 Comments 000890281 5058_ $$a3 Globalization and asphericity3.1 Locally CAT spaces; 3.2 Space of local geodesic paths; 3.3 Globalization; 3.4 Polyhedral spaces; 3.5 Flag complexes; 3.6 Cubical complexes; 3.7 Exotic aspherical manifolds; 3.8 Comments; 4 Subsets; 4.1 Motivating examples; 4.2 Two-convexity; 4.3 Sets with smooth boundary; 4.4 Open plane sets; 4.5 Shefel's theorem; 4.6 Polyhedral case; 4.7 Two-convex hulls; 4.8 Proof of Shefel's theorem; 4.9 Comments; Semisolutions; References; ; Index 000890281 506__ $$aAccess limited to authorized users. 000890281 520__ $$aAimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds. 000890281 588__ $$aOnline resource; title from PDF title page (viewed May 10, 2019). 000890281 650_0 $$aGeneralized spaces. 000890281 650_0 $$aRiemannian manifolds. 000890281 650_0 $$aGeometry, Riemannian. 000890281 7001_ $$aKapovitch, Vitali,$$eauthor. 000890281 7001_ $$aPetrunin, Anton,$$eauthor. 000890281 830_0 $$aSpringerBriefs in mathematics. 000890281 852__ $$bebk 000890281 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-030-05312-3$$zOnline Access$$91397441.1 000890281 909CO $$ooai:library.usi.edu:890281$$pGLOBAL_SET 000890281 980__ $$aEBOOK 000890281 980__ $$aBIB 000890281 982__ $$aEbook 000890281 983__ $$aOnline 000890281 994__ $$a92$$bISE